题目内容

17.已知集合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(m+9-x)>0}
(1)求A∩B
(2)若A∪C=C,求实数m的取值范围.

分析 分别解出A,B,C,(1)利用集合运算性质可得A∩B;
(2)由A∪C=C,可得A⊆C.即可得出.

解答 解:由合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(m+9-x)>0}.
∴A={x|-1<x<6},$B=\left\{{x\left|{x≥\frac{1}{2}或x≤\frac{1}{3}}\right.}\right\}$,C={x|m<x<m+9}.
(1)$A∩B=\left\{{x\left|{-1<x≤\frac{1}{3}或\frac{1}{2}≤x<6}\right.}\right\}$,
(2)由A∪C=C,可得A⊆C.
即$\left\{{\begin{array}{l}{m+9≥6}\\{m≤-1}\end{array}}\right.$,解得-3≤m≤-1.

点评 本题考查了不等式的解法、集合运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网