ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªB1£¬B2ÊÇÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$¶ÌÖáÉϵÄÁ½¸ö¶Ëµã£¬OÎª×ø±êԵ㣬µãAÊÇÍÖÔ²³¤ÖáÉϵÄÒ»¸ö¶Ëµã£¬µãPÊÇÍÖÔ²ÉÏÒìÓÚB1£¬B2µÄÈÎÒâÒ»µã£¬µãQÓëµãP¹ØÓÚyÖá¶Ô³Æ£¬¸ø³öÒÔÏÂÃüÌ⣬ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊǢ٢ܢݢٵ±PµãµÄ×ø±êΪ$£¨-\frac{2a}{3}£¬\frac{a}{3}£©$ʱ£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{2\sqrt{5}}}{5}$
¢ÚÖ±ÏßPB1£¬PB2µÄбÂÊÖ®»ýΪ¶¨Öµ$-\frac{a^2}{b^2}$
¢Û$\overrightarrow{P{B_1}}•\overrightarrow{P{B_2}}£¼0$
¢Ü$\frac{{P{B_2}}}{{sin¡ÏP{B_1}{B_2}}}$µÄ×î´óֵΪ$\frac{{{a^2}+{b^2}}}{a}$
¢ÝÖ±ÏßPB1£¬QB2µÄ½»µãMÔÚË«ÇúÏß$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$ÉÏ£®
·ÖÎö ¶Ô5¸öÃüÌâ·Ö±ð½øÐÐÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð
½â£º¢Ùµ±PµãµÄ×ø±êΪ$£¨-\frac{2a}{3}£¬\frac{a}{3}£©$ʱ£¬$\frac{4}{9}+\frac{{a}^{2}}{9{b}^{2}}$=1£¬¡àa=$\sqrt{5}$b£¬¡àc=2b£¬¡àÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{2\sqrt{5}}}{5}$£¬ÕýÈ·£»
¢ÚÉèP£¨x0£¬y0£©£¬ÔòPB1£¬PB2µÄбÂÊÖ®»ýΪ$\frac{{y}_{0}+b}{{x}_{0}}•\frac{{y}_{0}-b}{{x}_{0}}$=-$\frac{{b}^{2}}{{a}^{2}}$£¬Òò´Ë²»ÕýÈ·£»
¢Û¡ßµãPÔÚÔ²x2+y2=b2Í⣬¡àx02+y02-b2£¾0£¬¡à$\overrightarrow{P{B}_{1}}•\overrightarrow{P{B}_{2}}$=£¨-x0£¬-b-y0£©•£¨-x0£¬b-y0£©=x02+y02-b2£¾0£¬²»ÕýÈ·£»
¢Üµ±µãPÔÚ³¤ÖáµÄ¶¥µãÉÏʱ£¬¡ÏB1PB2×îСÇÒΪÈñ½Ç£¬Éè¡÷PB1B2µÄÍâ½ÓÔ²°ë¾¶Îªr£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º2r=$\frac{2b}{sin¡Ï{B}_{1}P{B}_{2}}$¡Ü$\frac{\frac{2b}{2ab}}{{a}^{2}+{b}^{2}}$=$\frac{{a}^{2}+{b}^{2}}{a}$£¬¡à$\frac{{P{B_2}}}{{sin¡ÏP{B_1}{B_2}}}$µÄ×î´óֵΪ$\frac{{{a^2}+{b^2}}}{a}$£¬ÕýÈ·£»
¢ÝÖ±ÏßPB1µÄ·½³ÌΪ£ºy+b=$\frac{{y}_{0}+b}{{x}_{0}}$x£¬Ö±ÏßQB2µÄ·½³ÌΪ£ºy-b=$\frac{{y}_{0}-b}{-{x}_{0}}$x£¬Á½Ê½Ïà³Ë»¯Îª$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$£¬¡àÖ±ÏßPB1£¬QB2µÄ½»µãMÔÚË«ÇúÏß$\frac{y^2}{b^2}-\frac{x^2}{a^2}=1$ÉÏ£¬¡àÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ü¢Ý£®
µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢ÕýÏÒ¶¨Àí¡¢Èý½ÇÐÎÍâ½ÓÔ²°ë¾¶¡¢Ö±ÏßÏཻÎÊÌ⡢˫ÇúÏߵıê×¼·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | $\frac{¦Ð}{2}$ | B£® | ¦Ð | C£® | 2¦Ð | D£® | ÓëaµÄ´óСÓÐ¹Ø |
| A£® | x2+y2+4x-3y=0 | B£® | x2+y2-4x-3y=0 | C£® | x2+y2+4x-3y-4=0 | D£® | x2+y2-4x-3y+8=0 |
| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{2¦Ð}{3}$ |