题目内容
17.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;
(Ⅱ)已知过P(0,-2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.
分析 (Ⅰ)利用直接法,求C点的轨迹Γ的方程;
(Ⅱ)设直线l的方程为y=kx-2,与抛物线方程联立,求出斜率,即可证明结论.
解答 解:(Ⅰ)设C(x,y)(y≠0),因为B在x轴上且BC中点在y轴上,所以B(-x,0),由|AB|=|AC|,得(x+1)2=(x-1)2+y2,
化简得y2=4x,所以C点的轨迹Γ的方程为y2=4x(y≠0).
(Ⅱ)直线l的斜率显然存在且不为0,
设直线l的方程为y=kx-2,M(x1,y1),N(x2,y2),
由$\left\{\begin{array}{l}{y^2}=4x\\ y=kx-2\end{array}\right.$得ky2-4y-8=0,
所以${y_1}+{y_2}=\frac{4}{k}$,${y_1}{y_2}=-\frac{8}{k}$,${k_{MQ}}=\frac{{{y_1}-2}}{{{x_1}-1}}=\frac{{{y_1}-2}}{{\frac{{{y_1}^2}}{4}-1}}=\frac{4}{{{y_1}+2}}$,同理${k_{NQ}}=\frac{4}{{{y_2}+2}}$,${k_{MQ}}•{k_{NQ}}=\frac{4}{{{y_1}+2}}•\frac{4}{{{y_2}+2}}=\frac{16}{{{y_1}{y_2}+2({y_1}+{y_2})+4}}=4$,
所以Q(1,2)与M,N两点连线的斜率之积为定值4.
点评 本题考查轨迹方程,考查直线与抛物线位置关系的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按31天算,记该女子一个月中的第n天所织布的尺数为an,则$\frac{{{a_1}+{a_3}+…+{a_{29}}+{a_{31}}}}{{{a_2}+{a_4}+…+{a_{28}}+{a_{30}}}}$的值为( )
| A. | $\frac{16}{5}$ | B. | $\frac{16}{15}$ | C. | $\frac{16}{29}$ | D. | $\frac{16}{31}$ |
8.三棱锥A-BCD中,AD⊥平面BCD,AD=1,△BCD是边长为2的等边三角形,则该几何体外接球的表面积为( )
| A. | $\frac{17}{6}π$ | B. | $\frac{19}{6}π$ | C. | $\frac{17}{3}π$ | D. | $\frac{19}{3}π$ |
12.已知f(x)是定义在R上的可导函数,且满足(x+1)f(x)+xf'(x)>0,则( )
| A. | f(x)>0 | B. | f(x)<0 | C. | f(x)为减函数 | D. | f(x)为增函数 |
2.某仪器经过检验合格才能出厂,初检合格率为$\frac{3}{4}$:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为$\frac{4}{5}$.每台仪器各项费用如表:
(Ⅰ)求每台仪器能出厂的概率;
(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润=出厂价-生产成本-检验费-调试费);
(Ⅲ)假设每台仪器是否合格相互独立,记X为生产两台仪器所获得的利润,求X的分布列和数学期望.
| 项目 | 生产成本 | 检验费/次 | 调试费 | 出厂价 |
| 金额(元) | 1000 | 100 | 200 | 3000 |
(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润=出厂价-生产成本-检验费-调试费);
(Ⅲ)假设每台仪器是否合格相互独立,记X为生产两台仪器所获得的利润,求X的分布列和数学期望.
9.已知函数$f(x)=ln\frac{1+x}{1-x}+{x^3}$,若函数y=f(x)+f(k-x2)有两个零点,则实数k的取值范围是( )
| A. | $({-\frac{1}{4},+∞})$ | B. | $({-\frac{1}{4},0})$ | C. | $({-\frac{1}{4},2})$ | D. | $[{-\frac{1}{4},2}]$ |