ÌâÄ¿ÄÚÈÝ
12£®É輯ºÏA={$\frac{n}{2}$|n¡ÊZ}£¬B={n|n¡ÊZ}£¬C={n+$\frac{1}{2}$|n¡ÊZ}£¬D={$\frac{n}{3}$+$\frac{1}{6}$|n¡ÊZ}£¬ÔòÔÚÏÂÁйØÏµÊ½ÖУ¬³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©| A£® | A$\underset{?}{¡Ù}$B$\underset{?}{¡Ù}$C$\underset{?}{¡Ù}$D | B£® | A¡ÉB=∅£¬C¡ÉD=∅ | C£® | A=B¡ÈC£¬C$\underset{?}{¡Ù}$D | D£® | A¡ÈB=B £¬C¡ÉD=∅ |
·ÖÎö ¶ÔÓÚ¼¯ºÏA£¬µ±n=2k£¬k¡ÊZʱ£¬A={x|x=k£¬k¡ÊZ}£¬µ±n=2k+1£¬k¡ÊZʱ£¬A={x|x=k+$\frac{1}{2}$£¬k¡ÊZ}£»
¶ÔÓÚ¼¯ºÏD={$\frac{n}{3}$+$\frac{1}{6}$|n¡ÊZ}£¬µ±n=3kʱ£¬D={k+$\frac{1}{6}$|k¡ÊZ}£¬µ±n=3k+1ʱ£¬D={k+$\frac{1}{2}$|k¡ÊZ}£¬µ±n=3k+2ʱ£¬D={k+$\frac{5}{6}$|k¡ÊZ}£¬ÎÊÌâµÃÒÔ½â¾ö£®
½â´ð ½â£º¼¯ºÏA={$\frac{n}{2}$|n¡ÊZ}£¬B={n|n¡ÊZ}£¬C={n+$\frac{1}{2}$|n¡ÊZ}£¬
µ±n=2k£¬k¡ÊZʱ£¬A={x|x=k£¬k¡ÊZ}
µ±n=2k+1£¬k¡ÊZʱ£¬A={x|x=k+$\frac{1}{2}$£¬k¡ÊZ}
¡àA=B¡ÈC£¬
D={$\frac{n}{3}$+$\frac{1}{6}$|n¡ÊZ}£¬
µ±n=3kʱ£¬D={k+$\frac{1}{6}$|k¡ÊZ}£¬
µ±n=3k+1ʱ£¬D={k+$\frac{1}{2}$|k¡ÊZ}£¬
µ±n=3k+2ʱ£¬D={k+$\frac{5}{6}$|k¡ÊZ}£¬
¡àC?D£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁ˼¯ºÏµÄÔËËãºÍ¼¯ºÏÖ®¼äµÄ¹ØÏµ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒa2=18-a7£¬S8=£¨¡¡¡¡£©
| A£® | 18 | B£® | 36 | C£® | 54 | D£® | 72 |
3£®Èôżº¯Êýf£¨x£©ÔÚ£¨-4£¬-1]ÉÏÊǼõº¯Êý£¬Ôò£¨¡¡¡¡£©
| A£® | f£¨-1£©£¼f£¨-1.5£©£¼f£¨2£© | B£® | f£¨-1.5£©£¼f£¨-1£©£¼f£¨2£© | C£® | f£¨2£©£¼f£¨-1£©£¼f£¨-1.5£© | D£® | f£¨2£©£¼f£¨-1.5£©£¼f£¨-1£© |
7£®12¸öͬÀà²úÆ·Öк¬ÓÐ2¸ö´ÎÆ·£¬ÏÖ´ÓÖÐÈÎÒâ³é³ö3¸ö£¬±ØÈ»Ê¼þÊÇ£¨¡¡¡¡£©
| A£® | 3¸ö¶¼ÊÇÕýÆ· | B£® | ÖÁÉÙÓÐÒ»¸öÊÇ´ÎÆ· | ||
| C£® | 3¸ö¶¼ÊÇ´ÎÆ· | D£® | ÖÁÉÙÓÐÒ»¸öÊÇÕýÆ· |
4£®ÔÚÇø¼ä[0£¬2]ÉÏËæ»úµØÈ¡Ò»¸öÊýx£¬Ôòʼþ¡°-1¡Ülog${\;}_{\frac{1}{2}}$x¡Ü1¡±·¢ÉúµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{3}{4}$ | B£® | $\frac{2}{3}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{1}{4}$ |
1£®ÒÑÖªµãA£¨1£¬1£©ºÍµãB£¨3£¬4£©£¬PÊÇyÖáÉϵÄÒ»µã£¬Ôò|PA|+|PB|µÄ×îСֵÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{13}$ | B£® | 5 | C£® | $\sqrt{29}$ | D£® | ²»´æÔÚ |