题目内容

14.在△ABC中,已知AB=3,A=120°,且△ABC的面积为$\frac{9\sqrt{3}}{4}$,则△ABC的外接圆的半径为3.

分析 利用S=$\frac{1}{2}×3b$sin120°=$\frac{9\sqrt{3}}{4}$,可得b.利用余弦定理a2=b2+c2-2bccosA,可得a,利用$\frac{a}{sinA}$=2R,可得R.

解答 解:在△ABC中,∵S=$\frac{1}{2}×3b$sin120°=$\frac{9\sqrt{3}}{4}$,∴b=3.
∴a2=b2+c2-2bccosA=32+32-2×32×cos120°=27,
∴a=3$\sqrt{3}$.
∴$\frac{a}{sinA}$=2R,
∴R=$\frac{3\sqrt{3}}{2sin12{0}^{°}}$=3.
故答案为:3.

点评 本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网