题目内容
定义在区间[0,]上的函数的图象与的图象的交点个数是 .
已知向量a=(m,4),b=(3,?2),且a∥b,则m=___________.
已知a>b>1.若logab+logba=,ab=ba,则a= ,b= .
[选修4-1几何证明选讲]如图,在ABC中,∠ABC=90°,BD⊥AC,D为垂足,E是BC的中点.
求证:∠EDC=∠ABD.
在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是 .
已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .
如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60º,G为BC的中点.
(Ⅰ)求证:FG平面BED;
(Ⅱ)求证:平面BED⊥平面AED;
(Ⅲ)求直线EF与平面BED所成角的正弦值.
设函数x∈R,其中a,b∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)存在极值点x0,且f(x1)= f(x0),其中x1≠x0,求证:x1+2x0=3;
(Ⅲ)设a>0,函数g(x)= |f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.
设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.