题目内容
已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .
某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为
(A) (B) (C) (D)
已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则
A.m>n且e1e2>1
B.m>n且e1e2<1
C.m<n且e1e2>1
D.m<n且e1e2<1
如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且 ,.
求证:(1)直线DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
定义在区间[0,]上的函数的图象与的图象的交点个数是 .
设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.
已知圆C的圆心在x轴的正半轴上,点在圆C上,且圆心到直线的距离为,则圆C的方程为__________.
已知函数=4tan xsin()cos() .
(Ⅰ)求f(x)的定义域与最小正周期;
(Ⅱ)讨论f(x)在区间[]上的单调性.
我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5), [0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;
(Ⅲ)估计居民月均用水量的中位数.