题目内容

4.如图所示,在三角形ABC中,AD⊥BC,AD=1,BC=4,点E为AC的中点,$\overrightarrow{DC}•\overrightarrow{BE}$=$\frac{15}{2}$,则AB的长度为(  )
A.2B.$\frac{3}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

分析 可以D为坐标原点,BC,AD所在直线分别为x轴,y轴,建立平面直角坐标系,并设BD=x,从而CD=4-x,这样便可写出图形上各点的坐标,从而可求出向量$\overrightarrow{DC},\overrightarrow{BE}$的坐标,根据$\overrightarrow{DC}•\overrightarrow{BE}=\frac{15}{2}$进行向量数量积的坐标运算便可建立关于x的方程,解出x,从而得出点B的坐标,从而便可得出AB的长度.

解答 解:以D为原点,分别以BC,AD所在直线为x,y轴,建立如图所示平面直角坐标系,设BD=x,CD=4-x,则:
D(0,0),A(0,-1),B(-x,0),C(4-x,0),E($\frac{4-x}{2},-\frac{1}{2}$);
∴$\overrightarrow{DC}=(4-x,0),\overrightarrow{BE}=(\frac{4+x}{2},-\frac{1}{2})$;
∴$\overrightarrow{DC}•\overrightarrow{BE}=\frac{16-{x}^{2}}{2}+0=\frac{15}{2}$;
∵x>0,∴解得x=1;
∴B(-1,0),又A(0,-1);
∴$|AB|=\sqrt{1+1}=\sqrt{2}$.
故选:C.

点评 考查通过建立平面直角坐标系,利用向量的坐标解决向量问题的方法,能求平面上点的坐标,根据点的坐标可求向量的坐标,以及向量数量积的坐标运算,两点间的距离公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网