ÌâÄ¿ÄÚÈÝ
17£®.Óмס¢ÒÒ¡¢±û¡¢¶¡ËÄÖ§Çò¶Ó½øÐе¥Ñ»·±ÈÈü£¬×îºó¾Ý¸÷¶Ó»ý·Ö¾ö³öÃû´Î£®¹æ¶¨Ã¿³¡±ÈÈü±ØÐë¾ö³öʤ¸º£¬ÆäÖÐʤ·½»ý2·Ö£¬¸º·½»ý1·Ö£¬ÒÑÖªÇò¶Ó¼×ÓëÇò¶ÓÒÒ¶ÔÕ󣬼׶ÓȡʤµÄ¸ÅÂÊΪ$\frac{2}{5}$£¬ÓëÇò¶Ó±û¡¢¶¡¶ÔÕ󣬼׶ÓȡʤµÄ¸ÅÂʾùΪ$\frac{1}{2}$£¬ÇÒ¸÷³¡´Îʤ¸ºÇé¿ö±Ë´ËûÓÐÓ°Ï죮£¨1£©¼×¶ÓÖÁÉÙʤһ³¡µÄ¸ÅÂÊ£»
£¨2£©ÇóÇò¶Ó¼×Èüºó»ý·Ö¦ÎµÄ¸ÅÂÊ·Ö²¼ºÍÊýѧÆÚÍû£®
·ÖÎö £¨1£©¼×¶ÓÖÁÉÙʤһ³¡µÄ¶ÔÁ¢Ê¼þÊǼ×Èý³¡±ÈÈüÈ«¸º£¬ÓÉ´ËÀûÓöÔÁ¢Ê¼þ¸ÅÂʼÆË㹫ʽÄÜÇó³ö¼×¶ÓÖÁÉÙʤһ³¡µÄ¸ÅÂÊ£®
£¨2£©ÓÉÌâÒâÖªÇò¶Ó¼×Èüºó»ý·Ö¦ÎµÄ¿ÉÄÜȡֵΪ3£¬4£¬5£¬6£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
½â´ð ½â£º£¨1£©¡ßÇò¶Ó¼×ÓëÇò¶ÓÒÒ¶ÔÕ󣬼׶ÓȡʤµÄ¸ÅÂÊΪ$\frac{2}{5}$£¬
ÓëÇò¶Ó±û¡¢¶¡¶ÔÕ󣬼׶ÓȡʤµÄ¸ÅÂʾùΪ$\frac{1}{2}$£¬
ÇÒ¸÷³¡´Îʤ¸ºÇé¿ö±Ë´ËûÓÐÓ°Ï죮
¼×¶ÓÖÁÉÙʤһ³¡µÄ¶ÔÁ¢Ê¼þÊǼ×Èý³¡±ÈÈüÈ«¸º£¬
¡à¼×¶ÓÖÁÉÙʤһ³¡µÄ¸ÅÂÊp=1-£¨1-$\frac{2}{5}$£©£¨1-$\frac{1}{2}$£©£¨1-$\frac{1}{2}$£©=$\frac{17}{20}$£®
£¨2£©ÓÉÌâÒâÖªÇò¶Ó¼×Èüºó»ý·Ö¦ÎµÄ¿ÉÄÜȡֵΪ3£¬4£¬5£¬6£¬
P£¨¦Î=3£©=£¨1-$\frac{2}{5}$£©£¨1-$\frac{1}{2}$£©£¨1-$\frac{1}{2}$£©=$\frac{3}{20}$£¬
P£¨¦Î=4£©=$\frac{2}{5}$£¨1-$\frac{1}{2}$£©£¨1-$\frac{1}{2}$£©+£¨1-$\frac{2}{5}$£©¡Á$\frac{1}{2}$¡Á£¨1-$\frac{1}{2}$£©+£¨1-$\frac{2}{5}$£©¡Á£¨1-$\frac{1}{2}$£©¡Á$\frac{1}{2}$=$\frac{2}{5}$£¬
P£¨¦Î=5£©=$\frac{2}{5}$¡Á$\frac{1}{2}$¡Á£¨1-$\frac{1}{2}$£©+£¨1-$\frac{2}{5}$£©¡Á$\frac{1}{2}$¡Á$\frac{1}{2}$+$\frac{2}{5}$¡Á£¨1-$\frac{1}{2}$£©¡Á$\frac{1}{2}$=$\frac{7}{20}$£¬
P£¨¦Î=6£©=$\frac{2}{5}$¡Á$\frac{1}{2}$¡Á$\frac{1}{2}$$\frac{1}{10}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
| ¦Î | 3 | 4 | 5 | 6 |
| P | $\frac{3}{20}$ | $\frac{2}{5}$ | $\frac{7}{20}$ | $\frac{1}{10}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬¿¼²é¸ÅÂʵÄÇ󷨼°Ó¦Ó㬿¼²é¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éת»¯»¯¹é˼Ï룬ÊÇÖеµÌ⣮
| A£® | $\frac{{\sqrt{2}}}{2}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{{\sqrt{3}}}{3}$ | D£® | ²»ÄÜÈ·¶¨ |
| A£® | b1b2¡bn=b1b2¡b17-n¡¡£¨n£¼17£¬n¡ÊN*£© | |
| B£® | b1b2¡bn=b1b2¡b18-n£¨n£¼18£¬n¡ÊN*£© | |
| C£® | b1+b2+¡+bn=b1+b2+¡+b17-n£¨n£¼17£¬n¡ÊN*£© | |
| D£® | b1+b2+¡+bn=b1+b2-1+¡+b18-n£¨n£¼18£¬n¡ÊN*£© |
| A£® | 10 | B£® | 16 | C£® | 20 | D£® | 35 |
| A£® | $\frac{1}{10}$ | B£® | 0 | C£® | -10 | D£® | -15 |