题目内容

15.在锐角△ABC中,B=60°,|${\overrightarrow{AB}$-$\overrightarrow{AC}}$|=2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范围为(  )
A.(0,12)B.[${-\frac{1}{4}$,12)C.(0,4]D.(0,2]

分析 以B为原点,BA所在直线为x轴建立坐标系,得到C的坐标,找出三角形为锐角三角形的A的位置,得到所求范围.

解答 解:以B为原点,BA所在直线为x轴建立坐标系,
∵B=60°,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|=2,
∴C(1,$\sqrt{3}$),
设A(x,0)
∵△ABC是锐角三角形,
∴A+C=120°,∴30°<A<90°,
即A在如图的线段DE上(不与D,E重合),
∴1<x<4,
则$\overrightarrow{AB}•\overrightarrow{AC}$=x2-x=(x-$\frac{1}{2}$)2-$\frac{1}{4}$,
∴$\overrightarrow{AB}•\overrightarrow{AC}$的范围为(0,12).
故选:A.

点评 本题考查数量积的应用,根据向量数量积的模长公式,利用解析法建立坐标系,利用坐标法求数量积范围是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网