题目内容

20.若圆锥的侧面展开图是半径为2,中心角为$\frac{5π}{3}$的扇形,则由它的两条母线所确定的截面面积的最大值为(  )
A.$\frac{{5\sqrt{11}}}{18}$B.2C.4D.$\frac{{5\sqrt{11}}}{9}$

分析 求出圆锥的母线和底面半径,设截面在圆锥底面的轨迹AB=a,(0<a≤2r),用a表示出截面的面积,利用基本不等式求出截面的面积最大值.

解答 解:圆锥的母线长l=2,设圆锥的底面半径为r,
则2πr=2×$\frac{5π}{3}$=$\frac{10π}{3}$.∴r=$\frac{5}{3}$.
设截面在圆锥底面的轨迹AB=a(0<a≤$\frac{10}{3}$).
则截面等腰三角形的高h=$\sqrt{{l}^{2}-\frac{{a}^{2}}{4}}$=$\sqrt{4-\frac{{a}^{2}}{4}}$.
∴截面面积S=$\frac{1}{2}ah$=$\frac{a}{2}\sqrt{4-\frac{{a}^{2}}{4}}$=$\sqrt{\frac{{a}^{2}}{4}(4-\frac{{a}^{2}}{4})}$≤$\frac{4}{2}$=2.
当且仅当$\frac{{a}^{2}}{4}=4-\frac{{a}^{2}}{4}$即a=2$\sqrt{2}$时取等号.
故选:B.

点评 本题考查了圆锥的结构特征,基本不等式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网