题目内容
20.已知抛物线$y=\frac{1}{4}{x^2}$上一点A的纵坐标为4,则点A到抛物线焦点的距离为( )| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 先根据抛物线的方程求得准线的方程,进而利用点A的纵坐标求得点A到准线的距离,进而根据抛物线的定义求得答案.
解答 解:依题意可知抛物线的准线方程为y=-1,
∴点A到准线的距离为4+1=5,
根据抛物线的定义可知点A与抛物线焦点的距离就是点A与抛物线准线的距离,
∴点A与抛物线焦点的距离为5,
故选:D.
点评 本题主要考查了抛物线的定义的运用.考查了学生对抛物线基础知识的掌握.属基础题.
练习册系列答案
相关题目
10.已知,0<β<α<$\frac{π}{4}$,cos(α-β)=$\frac{12}{13}$,且sin(α+β)=$\frac{4}{5}$,则sin2α的值为$\frac{63}{65}$.
8.已知正方体的表面积为24,则该正方体的体积为( )
| A. | 8 | B. | 27 | C. | 64 | D. | 125 |
15.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,若该病毒占据64MB内存(1MB=210KB),则开机后经过( )分钟.
| A. | 45 | B. | 44 | C. | 46 | D. | 47 |
12.如图给出的是计算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{18}$的值的一个程序框图,其中判断框内应填入的条件是( )

| A. | i>9 | B. | i<9 | C. | i>18 | D. | i<18 |
9.执行如图的程序框图,则输出的S值为( )

| A. | 33 | B. | 215 | C. | 343 | D. | 1025 |
10.设两条直线的方程分别为x+y+a=0和 x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤$\frac{1}{8}$,则这两条直线间距离的最大值为( )
| A. | $\frac{{\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\sqrt{2}$ |