题目内容
15.在平面直角坐标系xoy中,以原点o为极点,x轴的非负半轴为极轴,建立极坐标系已知直线l的方程为ρ(3cost-4sint)=1(t为参数),圆C的参数方程为$\left\{\begin{array}{l}{x=-4+cosθ}\\{y=3+sinθ}\end{array}\right.$(θ为参数)(I)求直线l的直角坐标方程和圆C的普通方程:
(II)若点P是圆C上的动点,求点P到直线l的距离最小值.
分析 (I)利用极坐标与直角坐标的互化方法求直线l的直角坐标方程;消去参数得到圆C的普通方程:
(II)点P到直线l的距离最小值=d-r.
解答 解:(I)∵ρ(3cost-4sint)=1,
∴直线l的直角坐标方程为:3x-4y-1=0;
∵圆C的参数方程为$\left\{\begin{array}{l}{x=-4+cosθ}\\{y=3+sinθ}\end{array}\right.$(θ为参数),
∴圆的普通方程为:(x+4)2+(y-3)2=1;
(II)由(I)可知圆心坐标为(-4,3),
点P到直线l的距离最小值=d-r=$\frac{|-12-12-1|}{\sqrt{9+16}}$-1=4,
∴点P到直线l的距离最小值为4.
点评 本题考查极坐标与直角坐标的互化方法、参数方程与直角坐标方程的互化,考查点到直线的距离公式,属于中档题.
练习册系列答案
相关题目
3.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=( )
| A. | 3 | B. | 1 | C. | 2 | D. | 4 |
10.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
(1)请将如表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{2}$ | $\frac{3π}{2}$ | $\frac{5π}{2}$ | $\frac{7π}{2}$ | $\frac{9π}{2}$ |
| Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
(2)将y=f(x)图象上所有点向左平行移动$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.
7.在△ABC中,已知sin(A+B)=$\frac{1}{2}$,则∠C是( )
| A. | 150° | B. | 30°或150° | C. | 60° | D. | 60°或120° |