题目内容
求函数f(x)=x3-3x2-9x+5的极值.
思路分析:由求函数的极值的方法先求其导数,解方程f′(x)=0,分区间讨论f′(x)的符号,进而得函数f(x)的极值.
解:f′(x)=3x2-6x-9=3(x+1)(x-3),令f′(x)=0,解得x1=-1,x2=3.?
∴x<-1时,f′(x)>0,函数f(x)递增;-1<x<3时,f′(x)<0,函数f(x)递减;x>3时,f′(x)>0,函数f(x)递增.
∴f(x)极大值=f(-1)=10;f(x)极小值=f(3)=-22?.
温馨提示
直接利用求极值的方法求极值.
练习册系列答案
相关题目