题目内容

(1)求函数y=
1
(1-3x)4
的导数.
(2)求函数f(x)=
x3,x∈[0,1]
x2,x∈(1,2]
2x,x∈(2,3]
在区间[0,3]上的积分.
分析:(1)利用导数的运算法则即可求得;
(2)利用定积分对区间的可加性可得答案;
解答:解:(1)y=(3x-1)-4
所以y′=-4(3x-1)-5•3=-
12
(3x-1)5

所以y′=-4(3x-1)-5•3=-
12
(3x-1)5
,;
(2)所以
3
0
f(x)dx
=
1
0
f(x)dx
+∫
2
1
f(x)dx
+∫
3
2
f(x)dx

=
1
0
x3dx
+∫
2
1
x2dx
+∫
3
2
2xdx

=
1
4
x4
|
1
0
+
1
3
x3
|
2
1
+
1
ln2
2x
|
3
2

=
1
4
+
7
3
+
4
ln2

=
31
12
+
4
ln2
点评:本题考查导数的运算法则、定积分的运算性质,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网