ÌâÄ¿ÄÚÈÝ
4£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ¢Ù¢Ú£¨ÌîÈëÄãÈÏΪËùÓÐÕýÈ·µÄÐòºÅ£©¢Ù$\frac{5¦Ð}{3}$µÄÕýÏÒÏßÓëÕýÇÐÏߵķ½ÏòÏàͬ£»
¢ÚÈôº¯Êýf£¨x£©=cos¦Øx£¨¦Ø£¾0£©ÔÚ$x¡Ê[-\frac{¦Ð}{3}£¬\frac{¦Ð}{4}]$ÉϵÄ×î´ó¡¢×îСֵ֮ºÍΪ0£¬Ôò¦ØµÄ×îСֵΪ3£»
¢ÛÔÚ¡÷ABCÖУ¬Èô$\overrightarrow{AB}$•$\overrightarrow{BC}$£¼0£¬Ôò¡÷ABCÊǶ۽ÇÈý½ÇÐΣ»
¢Ü¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf£¨x£©Âú×ãf£¨x£©=f£¨x+5£©£¬ÇÒf£¨3£©=0£¬ÔòÔÚ£¨0£¬10£©ÄÚf£¨x£©ÖÁÉÙÓÐ7¸öÁãµã£®
·ÖÎö ¢ÙÖ±½Ó¸ù¾ÝÕýÏÒÏߺÍÕýÇÐÏߵ͍ÒåÅжϼ´¿É£»
¢Ú¸ù¾Ýº¯ÊýµÄÐÔÖÊÖªx=0ʱº¯ÊýÈ¡µÃ×î´óÖµ£¬¿ÉµÃT¡Ü$\frac{¦Ð}{3}$¡Á2£¬Çó½â¼´¿É£»
¢ÛÀûÓÃÊýÁ¿»ýµÄ¶¨ÒåÅжϼ´¿É£¬×¢ÒâÏòÁ¿µÄ·½Ïò£»
¢Ü¸ù¾ÝÆæº¯ÊýµÄÐÔÖʺÍÖÜÆÚÐÔÅжϼ´¿É£®
½â´ð ½â£º¢Ù¸ù¾ÝÕýÏÒÏßÓëÕýÇÐÏߵ͍Òå¿ÉÖª£¬$\frac{5¦Ð}{3}$µÄÕýÏÒÏßÓëÕýÇÐÏߵķ½Ïò¶¼ÏòÏ£¬¹ÊÕýÈ·£»
¢ÚÈôº¯Êýf£¨x£©=cos¦Øx£¨¦Ø£¾0£©ÔÚ$x¡Ê[-\frac{¦Ð}{3}£¬\frac{¦Ð}{4}]$ÉϵÄ×î´ó¡¢×îСֵ֮ºÍΪ0£¬
x=0ʱº¯ÊýÈ¡µÃ×î´óÖµ£¬ËùÒÔT¡Ü$\frac{¦Ð}{3}$¡Á2£¬
ËùÒÔ $\frac{2¦Ð}{¦Ø}$¡Ü$\frac{2¦Ð}{3}$£¬½âµÃ¦Ø¡Ý3£¬
ËùÒԦصÄ×îСֵΪ£º3£¬¹ÊÕýÈ·£»
¢ÛÔÚ¡÷ABCÖУ¬Èô$\overrightarrow{AB}$•$\overrightarrow{BC}$£¼0£¬Ö»ÄÜÅжϡÏBΪÈñ½Ç£¬¹Ê´íÎó£»
¢Ü¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf£¨x£©Âú×ãf£¨x£©=f£¨x+5£©£¬ÇÒf£¨3£©=0£¬
¡ßf£¨x£©=f£¨x+5£©£¬
¡àº¯Êýf£¨x£©µÄÖÜÆÚÊÇ5£®
¡ßf£¨3£©=0£¬
¡àf£¨3£©=f£¨8£©=0£¬
¡ßf£¨x£©¶¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬
¡àf£¨0£©=0£¬¼´f£¨0£©=f£¨5£©=0£¬f£¨-3£©=f£¨2£©=f£¨7£©=0
¡àÔÚÇø¼ä£¨0£¬10£©ÉϵÄÁãµãÖÁÉÙÓÐ2£¬3£¬5£¬7£¬8
ÔòÔÚ£¨0£¬10£©ÄÚf£¨x£©ÖÁÉÙÓÐ5¸öÁãµã£¬¹Ê´íÎó£®
¹Ê´ð°¸Îª¢Ù¢Ú£®
µãÆÀ ¿¼²éÁËÕýÏÒÏߺÍÕýÇÐÏߵ͍Òå£¬Ææº¯ÊýºÍº¯ÊýµÄÖÜÆÚÐÔºÍÊýÁ¿»ýµÄ¶¨Ò壮
| A£® | ?x0¡ÊR£¬x${\;}_{0}^{2}$=x0 | B£® | ?x¡ÊR£¬x2=x | C£® | ?x0∉R£¬x${\;}_{0}^{2}$¡Ùx0 | D£® | ?x∉R£¬x2¡Ùx |
| A£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |