题目内容

已知a1b1+a2b2>0,且a1,a2,b1,b2都是实数,求证:a1b1+a2b2
a
2
1
+
a
2
2
b
2
1
+
b
2
2
考点:二维形式的柯西不等式
专题:证明题,不等式的解法及应用
分析:利用作差比较法,即可得出结论.
解答: 证明:∵(a12+a22)(b12+b22)-(a1b1+a2b22 =a12 b22+a22 b12-2a1b1a2b2=(a1b2-a2b12≥0,
∴(a12+a22)(b12+b22)≥(a1b1+a2b22成立,
∵a1b1+a2b2>0,
∴a1b1+a2b2
a
2
1
+
a
2
2
b
2
1
+
b
2
2
点评:本题考查不等式的性质,不等式的证明方法,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网