题目内容
19.在△ABC中,已知AC=2,BC=3,cosA=-$\frac{4}{5}$,则sin(2B+$\frac{π}{6}$)=$\frac{17+12\sqrt{7}}{25}$.分析 由条件利用同角三角的基本关系求得sinA的值,利用正弦定理求得sinB的值,可得cosB的值,利用二倍角公式求得sin2B、cos2B的值,再利用两角和的正弦公式,求得要求式子的值.
解答 解:△ABC中,∵已知AC=2,BC=3,cosA=-$\frac{4}{5}$∈($\frac{3π}{4}$,π),∴B∈(0,$\frac{π}{4}$),
∴sinA=$\sqrt{{1-cos}^{2}A}$=$\frac{3}{5}$,则由正弦定理可得$\frac{BC}{sinA}$=$\frac{3}{\frac{3}{5}}$=$\frac{2}{sinB}$,
∴sinB=$\frac{2}{5}$,cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{\sqrt{21}}{5}$,∴sin2B=2sinBcosB=$\frac{4\sqrt{21}}{25}$,∴cos2B=1-2sin2B=$\frac{17}{25}$,
sin(2B+$\frac{π}{6}$)=sin2Bcos$\frac{π}{6}$+cos2Bsin$\frac{π}{6}$=$\frac{4\sqrt{21}}{25}$•$\frac{\sqrt{3}}{2}$+$\frac{17}{25}$•$\frac{1}{2}$=$\frac{17+12\sqrt{7}}{50}$,
故答案为:$\frac{17+12\sqrt{7}}{50}$.
点评 本题主要考查同角三角的基本关系,正弦定理,二倍角公式,两角和的正弦公式,属于基础题.
练习册系列答案
相关题目
9.已知F、A分别为双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点和右顶点,过F作x轴的垂线在第一象限与双曲线交于点P,AP的延长线与双曲线在第一象限的渐近线交于点Q,若$\overrightarrow{AP}$=(2-$\sqrt{2}}$)$\overrightarrow{AQ}$,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
4.圆x2+y2-8x+6y+16=0与圆x2+y2=64的位置关系是( )
| A. | 相交 | B. | 内切 | C. | 相离 | D. | 外切 |
9.过抛物线C:y2=2px(p>0)的焦点F且倾斜角为45°的直线交C于A,B两点,若以AB为直径的圆被x轴截得的弦长为16$\sqrt{3}$,则p的值为( )
| A. | 8 | B. | 8$\sqrt{3}$ | C. | 12 | D. | 16 |