题目内容

3.已知{an}是等差数列,公差d>0,Sn是其前n项和,a1a4=22,S4=26.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Tn,求证:${T_n}<\frac{1}{6}$.

分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用“裂项求和”方法、数列的单调性即可证明.

解答 (1)解:∵a1a4=22,S4=26,∴a1(a1+3d)=22,4a1+$\frac{4×3}{2}$d=26,
解得a1=2,d=3;a1=11,d=-3(舍去).
∴an=2+3(n-1)=3n-1.
(2)证明:${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$$(\frac{1}{3n-1}-\frac{1}{3n+2})$,
数列{bn}的前n项和为Tn=$\frac{1}{3}[(\frac{1}{2}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{8})$+…+$(\frac{1}{3n-1}-\frac{1}{3n+2})]$
=$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$<$\frac{1}{6}$.

点评 本题考查了等差数列的通项公式与求和公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网