题目内容

11.已知$sinα=\frac{{4\sqrt{3}}}{7},cos(β-α)=\frac{13}{14},且0<β<α<\frac{π}{2}$.
(1)求tan2α的值;
(2)求cosβ的值.

分析 (1)由已知利用同角三角函数基本关系式可求cosα,tanα,进而利用二倍角的正切函数公式可求tan2α的值.
(2)由已知可求范围-$\frac{π}{2}$<β-α<0,利用同角三角函数基本关系式可求sin(β-α)的值,由β=(β-α)+α,利用两角和的余弦函数公式即可计算得解.

解答 解:(1)∵$sinα=\frac{{4\sqrt{3}}}{7},且0<β<α<\frac{π}{2}$.
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{1}{7}$,tanα=$\frac{sinα}{cosα}$=4$\sqrt{3}$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{8\sqrt{3}}{47}$.
(2)∵$cos(β-α)=\frac{13}{14},且0<β<α<\frac{π}{2}$.
∴-$\frac{π}{2}$<β-α<0,可得:sin(β-α)=-$\sqrt{1-co{s}^{2}(β-α)}$=-$\frac{3\sqrt{3}}{14}$,
∴cosβ=cos[(β-α)+α]=cos(β-α)cosα-sin(β-α)sinα=$\frac{13}{14}×\frac{1}{7}-(-\frac{3\sqrt{3}}{14})×\frac{4\sqrt{3}}{7}$=$\frac{1}{2}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正切函数公式,两角和的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网