ÌâÄ¿ÄÚÈÝ
13£®É躯Êýf£¨x£©=ax+bx-cx£¬ÆäÖÐc£¾a£¾0£¬c£¾b£¾0£®Èôa£¬b£¬cÊÇ¡÷ABCµÄÈýÌõ±ß³¤£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊǢ٢ڢܣ®£¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©¢Ù?x¡Ê£¨-¡Þ£¬1£©£¬f£¨x£©£¾0£»
¢Ú?x0¡ÊR£¬Ê¹${a^{x_0}}$£¬${b^{x_0}}$£¬${c^{x_0}}$²»Äܹ¹³ÉÒ»¸öÈý½ÇÐεÄÈýÌõ±ß³¤£»
¢ÛÈô¡÷ABCΪֱ½ÇÈý½ÇÐΣ¬¶ÔÓÚ?n¡ÊN*£¬f£¨2n£©£¾0ºã³ÉÁ¢£®
¢ÜÈô¡÷ABCΪ¶Û½ÇÈý½ÇÐΣ¬Ôò?x0¡Ê£¨1£¬2£©£¬Ê¹f£¨x0£©=0£®
·ÖÎö ¸ù¾Ýa£¬b£¬cÊÇÈý½ÇÐεÄÈý±ß³¤£¬µÃ³öf£¨x£©=cx[${£¨\frac{a}{c}£©}^{x}$+${£¨\frac{b}{c}£©}^{x}$-1]£¾cx£¨$\frac{a}{c}$+$\frac{b}{c}$-1£©£¾0£¬ÅжϢÙÕýÈ·£»
¾ÙÀý˵Ã÷a=2£¬b=3£¬c=4ʱ¹¹³ÉÈý½ÇÐεÄÈý±ß³¤£¬µ«a2=4£¬b2=9£¬c2=16²»Äܹ¹³ÉÈý½ÇÐεÄÈý±ß³¤£¬ÅжϢÚÕýÈ·£»
¡÷ABCΪֱ½ÇÈý½ÇÐÎʱc2=a2+b2£¬f£¨2n£©=a2n+b2n-c2n=a2n+b2n-£¨a2+b2£©n¡Ü0£¬ÅжϢ۴íÎó£»
¡÷ABCΪ¶Û½ÇÈý½ÇÐÎʱa2+b2-c2£¼0£¬f£¨1£©£¾0£¬f£¨2£©£¼0£¬º¯Êýf£¨x£©ÔÚÇø¼ä£¨1£¬2£©ÄÚ´æÔÚÁãµã£¬ÅжϢÜÕýÈ·£®
½â´ð ½â£º¶ÔÓÚ¢Ù£¬ÒòΪa£¬b£¬cÊÇÈý½ÇÐεÄÈýÌõ±ß³¤£¬ËùÒÔa+b£¾c£¬
ÓÖÒòΪc£¾a£¾0£¬c£¾b£¾0£¬ËùÒÔ0£¼$\frac{a}{c}$£¼1£¬0£¼$\frac{b}{c}$£¼1£¬
ËùÒÔµ±x¡Ê£¨-¡Þ£¬1£©Ê±£¬f£¨x£©=cx[${£¨\frac{a}{c}£©}^{x}$+${£¨\frac{b}{c}£©}^{x}$-1]£¾cx£¨$\frac{a}{c}$+$\frac{b}{c}$-1£©
=cx•$\frac{a+b-c}{c}$£¾0£¬¹Ê¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬Áîa=2£¬b=3£¬c=4£¬Ôòa£¬b£¬c¿ÉÒÔ¹¹³ÉÈý½ÇÐεÄÈý±ß³¤£¬
µ«a2=4£¬b2=9£¬c2=16È´²»Äܹ¹³ÉÈý½ÇÐεÄÈý±ß³¤£¬¹Ê¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬Èô¡÷ABCΪֱ½ÇÈý½ÇÐΣ¬ÓÉÌâÒâµÃc2=a2+b2£¬
¶ÔÓÚn¡ÊN*£¬f£¨2n£©=a2n+b2n-c2n=a2n+b2n-£¨a2+b2£©n¡Ü0£¬¹Ê¢Û´íÎó£»
¶ÔÓڢܣ¬ÒòΪc£¾a£¾0£¬c£¾b£¾0£¬ÇÒ¡÷ABCΪ¶Û½ÇÈý½ÇÐΣ¬
ËùÒÔa2+b2-c2£¼0£¬ÓÚÊÇf£¨1£©=a+b-c£¾0£¬f£¨2£©=a2+b2-c2£¼0£¬
¹Êº¯Êýf£¨x£©ÔÚÇø¼ä£¨1£¬2£©ÄÚ´æÔÚÁãµã£¬¼´?x0¡Ê£¨1£¬2£©£¬Ê¹f£¨x0£©=0£¬¹Ê¢ÜÕýÈ·£»
×ÛÉÏ£¬ÕýÈ·½áÂÛµÄÐòºÅΪ¢Ù¢Ú¢Ü£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®
µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅжÏÎÊÌ⣬Ҳ¿¼²éÁ˺¯ÊýµÄÐÔÖÊÓëÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÌ⣮
| A£® | 39 | B£® | 21 | C£® | 39»ò21 | D£® | 21»ò36 |
| A£® | °×É« | B£® | ºÚÉ« | C£® | °×É«µÄ¿É±ÈÐÔ´ó | D£® | ºÚÉ«µÄ¿ÉÄÜÐÔ´ó |
| A£® | $y=¡À\frac{1}{4}x$ | B£® | $y=¡À\frac{1}{3}x$ | C£® | $y=¡À\frac{1}{2}x$ | D£® | y=¡Àx |
| A£® | $y=¡À\frac{{\sqrt{2}}}{2}x$ | B£® | $y=¡À\sqrt{2}x$ | C£® | y=¡Àx | D£® | $y=¡À\frac{{\sqrt{5}}}{2}x$ |
| A£® | 32£¬-1 | B£® | 32£¬$\frac{1}{2}$ | C£® | 8£¬1 | D£® | 8£¬-1 |