题目内容

14.△ABC中,a、b、c分别为角A、B、C的对边,$a=6,b=5\sqrt{2}$,$cosA=\frac{4}{5}$,则∠B=45o或135o

分析 由已知利用同角三角函数基本关系式可求sinA的值,进而利用正弦定理可得sinB的值,结合范围B∈(0°,180°),可求B的值.

解答 解:∵$cosA=\frac{4}{5}$,可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{5\sqrt{2}×\frac{3}{5}}{6}$=$\frac{\sqrt{2}}{2}$,
∵B∈(0°,180°),
∴B=45°或135o
故答案为:45o或135o

点评 本题主要考查了同角三角函数基本关系式,正弦定理,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网