题目内容

4.三棱锥S-ABC中,底面ABC为等腰直角三角形,BA=BC=2,侧棱SA=SC=2$\sqrt{3}$,二面角S-AC-B的余弦值为$\frac{\sqrt{5}}{5}$,则此三棱锥外接球的表面积为(  )
A.16πB.12πC.D.

分析 审题后,二面角S-AC-B的余弦值为$\frac{\sqrt{5}}{5}$是重要条件,根据定义,先作出它的平面角,如图所示.进一步分析此三棱锥的结构特征,找出其外接球半径的几何或数量表示,再进行计算.

解答 解:如图所示:
取AC中点D,连接SD,BD,则由AB=BC,SA=SC得出SD⊥AC,BD⊥AC,
∴∠SDB为S-AC-B的平面角,且AC⊥面SBD.
又∵BD⊥AC,故BD=AD=$\frac{1}{2}$AC=$\sqrt{2}$,
在△SAC中,SD2=SA2-AD2=10,
在△SBD中,由余弦定理得SB2=SD2+BD2-2SD•BDcos∠SDB=8,
满足SB2=SD2-BD2
∴∠SBD=90°,SB⊥BD,
又SB⊥AC,BD∩AC=D,∴SB⊥面ABC.
以SB,BA,BC为棱可以补成一个长方体,S、A、B、C都在长方体的外接球上,
长方体的对角线为球的一条直径,所以2R=$\sqrt{4+4+8}$=4,R=2,
∴球的表面积S=4π×22=16π.
故选:A

点评 本题考查面面角,考查球的表面积,解题的关键是确定外接圆的半径,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网