题目内容

在一块耕地上种植一种作物,每季种植成本为800元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg)300500
概率0.50.5
作物市场价格(元/kg)610
概率0.20.8
(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:(Ⅰ)X的所有值为:500×10-800=4200,500×6-800=2200,300×10-800=2200,300×6-800=100,分别求出对应的概率,即可求X的分布列;
(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.
解答: 解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,
则P(A)=0.5,P(B)=0.2,
∵利润=产量×市场价格-成本,
∴X的所有值为:500×10-800=4200,500×6-800=2200,
300×10-800=2200,300×6-800=100,
则P(X=4200)=P(
.
A
)P(
.
B
)=(1-0.5)×(1-0.2)=0.4,
P(X=2200)=P(
.
A
)P(B)+P(A)P(
.
B
)=(1-0.5)×0.2+0.5(1-0.2)=0.5,
P(X=1000)=P(A)P(B)=0.5×0.2=0.1,
则X的分布列为:
 X4200 2200 1000
 P 0.4 0.50.1
(Ⅱ)设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),
则C1,C2,C3相互独立,
由(Ⅰ)知,P(Ci)=P(X=4200)+P(X=2200)=0.4+0.5=0.9(i=1,2,3),
3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.93=0.729,
3季的利润有2季不少于2000的概率为P(
.
C1
C2C3
)+P(C1
.
C2
C3
)+P(C1C2
.
C3
)=3×0.92×0.1=0.243,
综上:这3季中至少有2季的利润不少于2000元的概率为:0.729+0.243=0.972.
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网