ÌâÄ¿ÄÚÈÝ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµã$A£¨-\sqrt{2}£¬0£©$£¬$B£¨\sqrt{2}£¬0£©$£¬EΪ¶¯µã£¬ÇÒÖ±ÏßEAÓëÖ±ÏßEBµÄбÂÊÖ®»ýΪ¦Ë£¨¦Ë¡Ù0£©
£¨1£©Ç󶯵ãEµÄ¹ì¼£·½³Ì£¬Èô¶¯µãEµÄ¹ì¼£ºÍµãA¡¢BºÏ²¢¹¹³ÉÇúÏßC£¬ÌÖÂÛÇúÏßCµÄÐÎ×´£»
£¨2£©µ±¦Ë=-$\frac{1}{2}$ʱ£¬¼ÇÇúÏßCµÄÓÒ½¹µãΪF2£¬¹ýµãF2µÄÖ±Ïßl1£¬l2·Ö±ð½»ÇúÏßCÓÚµãP£¬QºÍµãM£¬N£¨µãP¡¢M¡¢Q¡¢N°´ÄæÊ±Õë˳ÐòÅÅÁУ©£¬ÇÒl1¡Íl2£¬ÇóËıßÐÎPMQNÃæ»ýµÄ×îÖµ£®

·ÖÎö £¨1£©É趯µãEµÄ×ø±êΪ£¨x£¬y£©£¬Óɵãµã$A£¨-\sqrt{2}£¬0£©$£¬$B£¨\sqrt{2}£¬0£©$£¬EΪ¶¯µã£¬ÇÒÖ±ÏßEAÓëÖ±ÏßEBµÄбÂÊÖ®»ýΪ¦Ë£¨¦Ë¡Ù0£©£¬Öª$\frac{y}{x+\sqrt{2}}$•$\frac{y}{x-\sqrt{2}}$=¦Ë£¨¦Ë¡Ù0£©£¬ÓÉ´ËÄÜÇó³ö¶¯µãEµÄ¹ì¼£CµÄ·½³Ì£®
£¨2£©·ÖбÂÊ´æÔÚÓë´æÔÚ·Ö±ðÌÖÂÛ£¬ÀûÓÃÖ±ÏßÓëÍÖÔ²ÁªÁ¢£¬¸ù¾ÝΤ´ï¶¨Àí¼°ÏÒ³¤¹«Ê½£¬È·¶¨Ãæ»ýµÄ±í´ïʽ£¬¼´¿ÉÇóµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©É趯µãEµÄ×ø±êΪ£¨x£¬y£©£¬
¡ßµã$A£¨-\sqrt{2}£¬0£©$£¬$B£¨\sqrt{2}£¬0£©$£¬EΪ¶¯µã£¬ÇÒÖ±ÏßEAÓëÖ±ÏßEBµÄбÂÊÖ®»ýΪ¦Ë£¨¦Ë¡Ù0£©£¬
¡à$\frac{y}{x+\sqrt{2}}$•$\frac{y}{x-\sqrt{2}}$=¦Ë£¨¦Ë¡Ù0£©£¬
ÕûÀí£¬µÃx2-$\frac{{y}^{2}}{¦Ë}$=2£¬x¡Ù¡À$\sqrt{2}$£¬
¡à¶¯µãEµÄ¹ì¼£CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2¦Ë}$=1£®
¦Ë=-1£¬ÇúÏßC±íʾԲ£»¦Ë£¼-1£¬½¹µãÔÚyÖáÉϵÄÍÖÔ²£»-1£¼¦Ë£¼0£¬½¹µãÔÚxÖáÉϵÄÍÖÔ²£»¦Ë£¾0£¬½¹µãÔÚxÖáÉϵÄË«ÇúÏߣ»
£¨2£©µ±¦Ë=-$\frac{1}{2}$ʱ£¬¼ÇÇúÏßC£º$\frac{{x}^{2}}{2}$+y2=1µÄÓÒ½¹µãΪF2£¨1£¬0£©
£¨¢¡£©Èôl1Óël2ÖÐÒ»ÌõбÂʲ»´æÔÚ£¬ÁíÒ»ÌõбÂÊΪ0£¬ÔòS=$\frac{1}{2}•2a•\frac{2{b}^{2}}{a}$=2¡­£¨5·Ö£©
£¨¢¢£©Èôl1Óël2µÃбÂʾù´æÔÚ£¬Éèl1£ºy=k£¨x-1£©ÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÏûÈ¥y¿ÉµÃ£¨1+2k2£©x2-4k2x+2k2-2=0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôòx1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$
¡à|PQ|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\frac{2\sqrt{2}£¨1+{k}^{2}£©}{1+2{k}^{2}}$
ͬÀí¿ÉµÃ|MN|=$\frac{2\sqrt{2}£¨{k}^{2}+1£©}{{k}^{2}+2}$¡­£¨8·Ö£©
S=$\frac{1}{2}$|PQ||MN|=$\frac{4£¨{k}^{4}+2{k}^{2}+1£©}{2{k}^{4}+5{k}^{2}+2}$=$\frac{4}{2+\frac{1}{{k}^{2}+\frac{1}{{k}^{2}}+2}}$
ÓÉ${k}^{2}+\frac{1}{{k}^{2}}$¡Ý2£¬µÃ$\frac{16}{9}¡ÜS£¼2$¡­£¨10·Ö£©
ÓÉ£¨¢¡£©£¨¢¢£©Öª£¬Smin=$\frac{16}{9}$£¬Smax=2¡­£¨12·Ö

µãÆÀ ±¾Ì⿼²é¶¯µãµÄ¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓã¬ÕýÈ·±íʾËıßÐÎPMQNµÄÃæ»ýÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø