题目内容
如图所示,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.
(1)求证:BE∥平面PAD;
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.
(1)见解析(2)
设AB=a,PA=b,如图所示,建立空间直角坐标系,则A(0,0,0),B(a,0,0),P(0,0,b),C(2a,2a,0),D(0,2a,0),E
.

(1)证明:
=
,
=(0,2a,0),
=(0,0,b),所以
=
+
,又BE?平面PAD,AD?平面PAD,AP?平面PAD,故BE∥平面PAD.
(2)∵BE⊥平面PCD,∴BE⊥PC,即
·
=0,
=(2a,2a,-b),∴
·
=2a2-
=0,即b=2a.
在平面BDE和平面BDC中,
=(0,a,a),
=(-a,2a,0),
=(a,2a,0),
所以平面BDE的一个法向量为n1=(2,1,-1),平面BDC的一个法向量为n2=(0,0,1).
cos〈n1,n2〉=-
,所以平面EBD与平面BDC夹角的余弦值为
.
(1)证明:
(2)∵BE⊥平面PCD,∴BE⊥PC,即
在平面BDE和平面BDC中,
所以平面BDE的一个法向量为n1=(2,1,-1),平面BDC的一个法向量为n2=(0,0,1).
cos〈n1,n2〉=-
练习册系列答案
相关题目