题目内容
数列{an}中,已知an=
,求数列{an}的前n项和Sn.
| 3 |
| (2n+4)n |
考点:数列的求和
专题:等差数列与等比数列
分析:由an=
=
(
-
),利用裂项求和法求解.
| 3 |
| (2n+4)n |
| 3 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:∵an=
=
(
-
),
∴Sn=
(1-
+
-
+
-
+…+
-
+
-
)
=
(1+
-
-
)
=
-
.
| 3 |
| (2n+4)n |
| 3 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
∴Sn=
| 3 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 9 |
| 8 |
| 6n+9 |
| 4(n+1)(n+2) |
点评:本题考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目