题目内容
我们把一系列向量
(i=1,2,…,n…)排成一列,称为向量列,记作{
},又设
=(xn,yn),假设向量列{
}满足:
=(
,
),
=
(
xn-1-yn-1,xn-1+
yn-1)(n≥2).
(1)证明数列{|
|}是等比数列;
(2)设θn表示向量
,
(n∈N*)间的夹角,若bn=sin2nθn,记{bn}的前n项和为Sn,求S3m;
(3)设f(x)是R上不恒为零的函数,且对任意的a,b∈R,都有f(a•b)=af(b)+bf(a),若f(2)=2,un=
(n∈N*),求数列{un}的前n项和Tn.
| ai |
| an |
| an |
| an |
| a1 |
| 2 |
| 2 |
| an |
| 1 | ||
2
|
| 3 |
| 3 |
(1)证明数列{|
| an |
(2)设θn表示向量
| an |
| an+1 |
(3)设f(x)是R上不恒为零的函数,且对任意的a,b∈R,都有f(a•b)=af(b)+bf(a),若f(2)=2,un=
f(
| ||||
| n |
考点:数列的求和,数列与向量的综合
专题:等差数列与等比数列
分析:(1)由已知条件推导出|
|=
=
|
|,由此能证明数列{|
|}是等比数列.
(2)由已知条件求出cosθn=
=
=
,所以bn=sin
,由此得到当m=2k时,S3m=0;当m=2k+1时,S3m=
.
(3)由已知条件推导出g(an)=ng(a),f(an)=an•g(an)=nang(a)=nan-1f(a),由此能求出数列{un}的前n项和Tn.
| an |
| ||
| 2 |
| xn-12+yn-12 |
| ||
| 2 |
| an-1 |
| an |
(2)由已知条件求出cosθn=
| ||||
|
|
| ||||||||||
|
| ||
| 2 |
| nπ |
| 3 |
| 3 |
(3)由已知条件推导出g(an)=ng(a),f(an)=an•g(an)=nang(a)=nan-1f(a),由此能求出数列{un}的前n项和Tn.
解答:
(1)证明:|
|=
=
=
|
|,
∴数列{|
|}是等比数列.
(2)解:∵cosθn=
=
=
=
∴θn=
,∴bn=sin
,
∴当m=2k时,S3m=0;当m=2k+1时,S3m=
;
(3)解:令a=b=1,得f(1)=0,
令a=2,b=
,得f(1)=
f(2)+2f(
),∴f(
)=-
当ab≠0时,
=
+
,
令g(x)=
,则g(a•b)=g(a)+g(b),
故g(an)=ng(a),
∴f(an)=an•g(an)=nang(a)=nan-1f(a),
∴un=
=(
)n-1•f(
)=(-
)•(
)n-1,
∴Tn=
=(
)n-1(n∈N*).
| an |
| 1 | ||
2
|
(
|
=
| ||
| 2 |
| xn-12+yn-12 |
| ||
| 2 |
| an-1 |
∴数列{|
| an |
(2)解:∵cosθn=
| ||||
|
|
=
(xn,yn)•
| ||||||||
|
=
| ||||||||||
|
| ||
| 2 |
∴θn=
| π |
| 6 |
| nπ |
| 3 |
∴当m=2k时,S3m=0;当m=2k+1时,S3m=
| 3 |
(3)解:令a=b=1,得f(1)=0,
令a=2,b=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
当ab≠0时,
| f(a•b) |
| ab |
| f(b) |
| b |
| f(a) |
| a |
令g(x)=
| f(x) |
| x |
故g(an)=ng(a),
∴f(an)=an•g(an)=nang(a)=nan-1f(a),
∴un=
| f(2-n) |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=
-
| ||||
1-
|
| 1 |
| 2 |
点评:本题考查等比数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意向量知识的合理运用.
练习册系列答案
相关题目