题目内容
1.计算:(1)$\frac{lg2+lg5-lg8}{lg50-lg40}$;
(2)log3$\frac{\root{4}{27}}{3}$log5[${4}^{\frac{1}{2}{log}_{2}10}$-(${\sqrt{3}}^{3}$)${\;}^{\frac{2}{3}}$-7log72].
分析 分别根据对数的运算性质进行计算即可.
解答 解:(1)$\frac{lg2+lg5-lg8}{lg50-lg40}$=$\frac{lg10-lg8}{lg\frac{50}{40}}$=$\frac{lg\frac{10}{8}}{lg\frac{5}{4}}$=1,
(2)log3$\frac{\root{4}{27}}{3}$log5[${4}^{\frac{1}{2}{log}_{2}10}$-(${\sqrt{3}}^{3}$)${\;}^{\frac{2}{3}}$-7log72]=log3${3}^{-\frac{1}{4}}$log5(2log210-${3}^{\frac{3}{2}×\frac{2}{3}}$-7log72)=-$\frac{1}{4}$log5(10-3-2)=-$\frac{1}{4}$.
点评 本题考查了对数函数的运算性质,属于基础题.
练习册系列答案
相关题目
13.在等比数列{an}中,2a4=a6+a5,则公比q等于( )
| A. | 1或2 | B. | -1或-2 | C. | 1或-2 | D. | -1或2 |
16.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(c,0)关于直线y=$\frac{b}{c}$x的对称点Q在椭圆上,则椭圆的离心率是( )
| A. | $\frac{\sqrt{5}-1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}-1}{2}$ | D. | $\frac{3}{5}$ |
13.设i为虚数单位,复数$\frac{1+i}{2+bi}$为纯虚数,则实数b等于( )
| A. | 2 | B. | 1 | C. | -1 | D. | -2 |
11.已知偶函数f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间[0,2]上是递增的,则f(-6.5),f(-1),f(0)的大小关系是( )
| A. | f(0)<f(-6.5)<f(-1) | B. | f(-6.5)<f(0)<f(-1) | C. | f(-1)<f(-6.5)<f(0) | D. | f(-1)<f(0)<f(-6.5) |