题目内容

4.设△ABC内角A,B,C所对的边分别为a,b,c,且$a=bcosC+\sqrt{3}csinB$.
(Ⅰ)求B的大小;
(Ⅱ)若$a=\sqrt{3}$,c=2,AC边的中点为D,求BD的长.

分析 (Ⅰ)由三角函数恒等变换的应用,正弦定理化简已知等式可得$cosBsinC=\sqrt{3}sinCsinB$,结合sinC≠0,可求tanB,由B的范围利用特殊角的三角函数值可求B的值.
(Ⅱ)由题意可得$\overrightarrow{BD}=\frac{1}{2}({\overrightarrow{BA}+\overrightarrow{BC}})$,平方后,利用平面向量数量积的运算即可计算求值得解.

解答 (本题满分为12分)
解:(Ⅰ)∵$a=bcosC+\sqrt{3}csinB$,
∴$sinA=sinBcosC+\sqrt{3}sinCsinB$,
∴$sin({B+C})=sinBcosC+\sqrt{3}sinCsinB$,
∴$cosBsinC=\sqrt{3}sinCsinB$,
∵sinC≠0,
∴$cosB=\sqrt{3}sinB⇒tanB=\frac{{\sqrt{3}}}{3}$,
∵B是三角形的内角,
∴$B=\frac{π}{6}$…6分
(Ⅱ)∵$\overrightarrow{BD}=\frac{1}{2}({\overrightarrow{BA}+\overrightarrow{BC}})$,
∴${\overrightarrow{BD}^2}=\frac{1}{4}{({\overrightarrow{BA}+\overrightarrow{BC}})^2}$=$\frac{1}{4}$($\overrightarrow{BA}$2+$\overrightarrow{BC}$2+2$\overrightarrow{BA}$•$\overrightarrow{BC}$)=$\frac{1}{4}$(c2+a2+2×a×c×cosB)=$\frac{1}{4}$(4+3+2×$2×\sqrt{3}×\frac{\sqrt{3}}{2}$)=$\frac{13}{4}$,
∴$|{\overrightarrow{BD}}|=\frac{{\sqrt{13}}}{2}$…12分
(其他形式解答可酌情给分)

点评 本题主要考查了三角函数恒等变换的应用,正弦定理,特殊角的三角函数值,平面向量数量积的运算在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网