题目内容
8.函数f(x)=(a+1)tan2x+3sinx+a2-3a-4为奇函数的充要条件是( )| A. | a=4 | B. | a=-1 | C. | a=4或a=-1 | D. | a∈R |
分析 根据充要条件的定义结合函数奇偶性的性质进行求解即可.
解答 解:∵函数f(x)=(a+1)tan2x+3sinx+a2-3a-4为奇函数,
∴f(-x)=-f(x),
即(a+1)tan2x-3sinx+a2-3a-4=-[(a+1)tan2x+3sinx+a2-3a-4],
即(a+1)tan2x+a2-3a-4=-(a+1)tan2x-(a2-3a-4),
则$\left\{\begin{array}{l}{a+1=-(a+1)}\\{{a}^{2}-3a-4=-({a}^{2}-3a-4)}\end{array}\right.$,
即$\left\{\begin{array}{l}{a+1=0}\\{{a}^{2}-3a-4=0}\end{array}\right.$,即$\left\{\begin{array}{l}{a=-1}\\{a=4或a=-1}\end{array}\right.$,
则a=-1,
当a=-1时,f(x)=3sinx为奇函数,
则函数f(x)=(a+1)tan2x+3sinx+a2-3a-4为奇函数的充要条件是a=-1,
故选:B
点评 本题主要考查充要条件的求解,根据函数奇偶性的定义建立方程关系是解决本题的关键.
练习册系列答案
相关题目
16.我国2010年底的人口总数为M,人口的年平均自然增长率p,到2020年底我国人口总数是( )
| A. | M(1+P)3 | B. | M(1+P)9 | C. | M(1+P)10 | D. | M(1+P)11 |
3.下列4个命题是真命题的是( )
①“若x2+y2=0,则x、y均为零”的逆命题
②“相似三角形的面积相等”的否命题
③“若A∩B=A,则A⊆B”的逆否命题
④“末位数字不是零的数可被3整除”的逆否命题.
①“若x2+y2=0,则x、y均为零”的逆命题
②“相似三角形的面积相等”的否命题
③“若A∩B=A,则A⊆B”的逆否命题
④“末位数字不是零的数可被3整除”的逆否命题.
| A. | ①② | B. | ②③ | C. | ①③ | D. | ③④ |
13.连锁经营公司所属5个零售店某月的销售额利润资料如表:
(1)画出销售额和利润额的散点图
(2)若销售额和利润额具有相关关系,试计算利润额y对销售额x的回归直线方程.
(3)估计要达到1000万元的利润额,销售额约为多少万元.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x)
| 商品名称 | A | B | C | D | E |
| 销售额x/千万元 | 3 | 5 | 6 | 7 | 9 |
| 利润额y/百万元 | 2 | 3 | 3 | 4 | 5 |
(2)若销售额和利润额具有相关关系,试计算利润额y对销售额x的回归直线方程.
(3)估计要达到1000万元的利润额,销售额约为多少万元.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x)