题目内容
16.f(x)是定义在R上函数,满足f(x)=f(-x)且x≥0时,f(x)=x3,若对任意的x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,则实数t的取值范围是t≤-3或t≥1或t=0.分析 由题意f(x)为R上偶函数,f(x)=x3 在x>0上为单调增函数知|3x-t|≥|2x|,转化为对任意x∈[2t-1,2t+3],5x2-6xt+t2≥0 恒成立问题.
解答 解:f(x)为R上偶函数,f(x)=x3 在x>0上为单调增函数,
f(3x-t)≥8f(x)=f(2x);
|3x-t|≥|2x|;
∴(3x-t)2≥(2x)2;
化简后:5x2-6xt+t2≥0 ①;
(1)当t>0时,①式解为:x≤$\frac{t}{5}$或 x≥t;
对任意x∈[2t-1,2t+3],①式恒成立,则需:t≤2t-1
故t≥1;
(2)当t<0时,①是解为:x≤t 或 x≥$\frac{t}{5}$;
对任意x∈[2t-1,2t+3],①式恒成立,则需:2t+3≤t
故t≤-3;
(3)当t=0时,①式恒成立;
综上所述,t≤-3或t≥1或t=0.
故答案为t≤-3或t≥1或t=0.
点评 本题主要考查了函数的基本性质,以及函数恒成立问题,属中等题.
练习册系列答案
相关题目
4.在△ABC中,角A、B、C所对的边分别为a、b、c,若b=1,$\frac{1}{2}sinB=cos({B+C})sinC$,则当角B取最大值时,△ABC的周长为( )
| A. | 3 | B. | $2+\sqrt{2}$ | C. | $2+\sqrt{3}$ | D. | $3+\sqrt{2}$ |
11.设函数$f(x)=sin(ωx+φ)-\sqrt{3}cos(ωx+φ)$($ω>0,|φ|<\frac{π}{2}$)的最小正周期为π,且f(x)为奇函数,则( )
| A. | f(x)在$(0,\frac{π}{2})$单调递减 | B. | f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递减 | ||
| C. | f(x)在$(0,\frac{π}{2})$单调递增 | D. | f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递增 |
5.已知i为虚数单位,则复数$\frac{(1-i)^{3}}{(1+i)^{2}}$在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
6.已知m,n∈R,则“mn<0”是“抛物线mx2+ny=0的焦点在y轴正半轴上”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |