ÌâÄ¿ÄÚÈÝ

5£®ÏÖ¸ø³öÏÂÁнáÂÛ£º
£¨1£©ÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinBÔòa£¾b£»
£¨2£©$sin\frac{¦Ð}{4}sin£¨x+\frac{¦Ð}{4}£©$ÊÇsinxºÍcosxµÄµÈ²îÖÐÏ
£¨3£©º¯Êýy=sinx+2cosxµÄÖµÓòΪ[-3£¬3]£»
£¨4£©Õñ¶¯·½³Ì$y=-2sin£¨2x+\frac{¦Ð}{8}£©$£¨x¡Ý0£©µÄ³õÏàΪ$\frac{¦Ð}{8}$£»
£¨5£©Èñ½ÇÈý½ÇÐÎABCÖУ¬¿ÉÄÜÓÐcosA+cosB+cosC£¾sinA+sinB+sinC£®
ÆäÖÐÕýÈ·½áÂ۵ĸöÊýΪ2£®

·ÖÎö £¨1£©ÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinB£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{a}{sinA}=\frac{b}{sinB}$£¬¼´¿ÉÅжϳöÕæ¼Ù£»
£¨2£©2$sin\frac{¦Ð}{4}sin£¨x+\frac{¦Ð}{4}£©$=$\sqrt{2}$$sin£¨x+\frac{¦Ð}{4}£©$£¬Õ¹¿ª¼´¿ÉÅжϳöÕæ¼Ù£»
£¨3£©º¯Êýy=sinx+2cosx=$\sqrt{5}$sin£¨x+¦È£©¡Ê$[-\sqrt{5}£¬\sqrt{5}]$£¬¼´¿ÉÅжϳöÕæ¼Ù£»
£¨4£©Õñ¶¯·½³Ì$y=-2sin£¨2x+\frac{¦Ð}{8}£©$=2sin$£¨2x+\frac{9¦Ð}{8}£©$£¨x¡Ý0£©£¬¼´¿ÉµÃ³ö³õÏࣻ
£¨5£©Èñ½ÇÈý½ÇÐÎABCÖУ¬ÓÉ$0£¼\frac{¦Ð}{2}-A£¼B£¼\frac{¦Ð}{2}$£¬¿ÉµÃ$sin£¨\frac{¦Ð}{2}-A£©$£¼sinB£¬¼´cosA£¼sinB£¬Í¬Àí¿ÉµÃ£ºcosB£¼sinC£¬cosC£¼sinA£¬¼´¿ÉÅжϳöÕæ¼Ù£®

½â´ð ½â£º£¨1£©ÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinB£¬ÓÉÕýÏÒ¶¨Àí¿ÉµÃ£º$\frac{a}{sinA}=\frac{b}{sinB}$£¬Ôòa£¾b£¬ÕýÈ·£»
£¨2£©2$sin\frac{¦Ð}{4}sin£¨x+\frac{¦Ð}{4}£©$=$\sqrt{2}$$sin£¨x+\frac{¦Ð}{4}£©$=$\sqrt{2}£¨\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx£©$=sinx+cosx£¬Òò´Ë$sin\frac{¦Ð}{4}sin£¨x+\frac{¦Ð}{4}£©$ÊÇsinxºÍcosxµÄµÈ²îÖÐÏÕýÈ·£»
£¨3£©º¯Êýy=sinx+2cosx=$\sqrt{5}$sin£¨x+¦È£©¡Ê$[-\sqrt{5}£¬\sqrt{5}]$£¬Òò´Ë²»ÕýÈ·£»
£¨4£©Õñ¶¯·½³Ì$y=-2sin£¨2x+\frac{¦Ð}{8}£©$=2sin$£¨2x+\frac{9¦Ð}{8}£©$£¨x¡Ý0£©µÄ³õÏàΪ$\frac{9¦Ð}{8}$£¬²»ÕýÈ·£»
£¨5£©Èñ½ÇÈý½ÇÐÎABCÖУ¬ÓÉ$0£¼\frac{¦Ð}{2}-A£¼B£¼\frac{¦Ð}{2}$£¬¿ÉµÃ$sin£¨\frac{¦Ð}{2}-A£©$£¼sinB£¬¼´cosA£¼sinB£¬Í¬Àí¿ÉµÃ£ºcosB£¼sinC£¬cosC£¼sinA£¬
Òò´ËcosA+cosB+cosC£¼sinA+sinB+sinC£¬²»ÕýÈ·£®
ÆäÖÐÕýÈ·½áÂ۵ĸöÊýΪ2£®
¹Ê´ð°¸Îª£º2£®

µãÆÀ ±¾Ì⿼²éÁ˼òÒ×Âß¼­µÄÅж¨·½·¨¡¢ÕýÏÒ¶¨ÀíµÄÓ¦Óá¢Èý½Çº¯ÊýͼÏóÓëÐÔÖʼ°ÆäÇóÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø