ÌâÄ¿ÄÚÈÝ

13£®ÒÑÖªÔ²×¶ÇúÏß$C£º\left\{{\begin{array}{l}{x=2cos¦Á}\\{y=sin¦Á}\end{array}}\right.£¨¦ÁΪ²ÎÊý£©$ºÍ¶¨µã$A£¨{0£¬\sqrt{3}}£©$£¬F1£¬F2ÊÇ´ËÔ²×¶ÇúÏßµÄ×ó¡¢ÓÒ½¹µã£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨¢ñ£©ÇóÖ±ÏßAF2µÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©¾­¹ýµãF1ÇÒÓëÖ±ÏßAF2´¹Ö±µÄÖ±Ïßl½»´ËÔ²×¶ÇúÏßÓÚM£¬NÁ½µã£¬Çó||MF1|-|NF1||µÄÖµ£®

·ÖÎö £¨¢ñ£©ÏûÈ¥²ÎÊý¦Á¿ÉµÃÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£¬ÏȵÃÖ±ÏߵįÕͨ·½³Ì£¬»¯Îª¼«×ø±ê·½³Ì¼´¿É£»
£¨¢ò£©Ò×µÃlµÄ·½³Ì£¬½â·½³Ì×é¿ÉµÃ½»µã×ø±ê£¬ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉµÃ£®

½â´ð ½â£º£¨¢ñ£©ÏûÈ¥²ÎÊý¦Á¿ÉµÃÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£¬
¿ÉµÃF1£¨-$\sqrt{3}$£¬0£©£¬F2£¨$\sqrt{3}$£¬0£©£¬
¡àÖ±ÏßAF2µÄбÂÊΪk=$\frac{\sqrt{3}-0}{0-\sqrt{3}}$=-1£¬
¹ÊÖ±Ïß·½³ÌΪy-$\sqrt{3}$=-£¨x-0£©£¬¼´x+y=$\sqrt{3}$£¬
¡à¼«×ø±ê·½³ÌΪ¦Ñcos¦È+¦Ñsin¦È=$\sqrt{3}$£»
£¨¢ò£©¾­¹ýµãF1£¨-$\sqrt{3}$£¬0£©ÇÒÓëÖ±ÏßAF2´¹Ö±µÄÖ±ÏßlбÂÊΪ1£¬
¹ÊlµÄ·½³ÌΪy-0=x+$\sqrt{3}$£¬¼´y=x+$\sqrt{3}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=x+\sqrt{3}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$¿É½âµÃM£¨$\frac{-4\sqrt{3}+2\sqrt{2}}{5}$£¬$\frac{\sqrt{3}+2\sqrt{2}}{5}$£©£¬N£¨$\frac{-4\sqrt{3}-2\sqrt{2}}{5}$£¬$\frac{\sqrt{3}-2\sqrt{2}}{5}$£©£¬
¡àÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉµÃ||MF1|-|NF1||=$\frac{8}{5}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ²ÎÊý·½³ÌºÍÖ±Ïߵļ«×ø±ê·½³Ì£¬Éæ¼°Ö±ÏߺÍÍÖÔ²ÏཻµÄÎÊÌ⣬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø