题目内容
偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=-x+1,则关于x的方程f(x)=lg(x+1)在x∈[0,9]上解的个数是( )
A.7 B.8 C.9 D.10
一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )
A.1 B.2 C.3 D.4
给出以下四个命题:
①若函数的定义域为,则函数的定义域为;
②函数的单调递减区间是;
③已知集合,则映射中满足的映射共有3个;
④若,且,.
其中正确的命题有______.(写出所有正确命题的序号)
设函数f(x)=x3-x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)求b,c的值;
(2)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求a的取值范围.
(3)若g(x)在(-2,-1)内为减函数,如何求解?
(4)若g(x)在(-2,-1)上不单调,求a的取值范围.
定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.
已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )
A.a<b<c B.c<a<b C.a<c<b D.c<b<a
已知数列是等差数列, 满足,数列满足,且数列为等比数列.
(1)求数列和的通项公式;
(2)求数列的前项和.
设,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分也不必要条件
如图所示, 医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后分钟, 瓶内液面与进气管的距离为厘米,已知当时,.如果瓶内的药液恰好156分钟滴完. 则函数的图像为( )