题目内容
2.设△ABC的三个内角为A,B,C,向量$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),若$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),则C等于( )| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由平面向量数量积的坐标运算结合辅助角公式化积,可得$sin(C-\frac{π}{6})=\frac{1}{2}$.进一步求得C得答案.
解答 解:∵$\overrightarrow{m}$=($\sqrt{3}$sinA,sinB),$\overrightarrow{n}$=(cosB,$\sqrt{3}$cosA),
∴$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}sinAcosB+\sqrt{3}cosAsinB=\sqrt{3}sin(A+B)$,
又$\overrightarrow{m}$•$\overrightarrow{n}$=1-cos(A+B),∴$\sqrt{3}sin(A+B)=1-cos(A+B)$,
得$\sqrt{3}sinC-cosC=1$,即2$sin(C-\frac{π}{6})=1$,
∴$sin(C-\frac{π}{6})=\frac{1}{2}$.
∵$-\frac{π}{6}<C-\frac{π}{6}<\frac{5π}{6}$,∴$C-\frac{π}{6}=\frac{π}{6}$,则C=$\frac{π}{3}$.
故选:B.
点评 本题考查平面向量的数量积运算,考查了三角函数中的恒等变换应用,是中档题.
练习册系列答案
相关题目
13.若随机变量X的分布列为:
已知随机变量Y=aX+b(a,b∈R,a>0),且E(Y)=10,D(Y)=21,则a与b的值为( )
| X | 0 | 1 |
| p | 0.3 | 0.7 |
| A. | a=10,b=3 | B. | a=3,b=10 | C. | a=100,b=-60 | D. | a=60,b=-100 |
17.①设数列{an}的前n项和为Sn,由an=2n-1,求出S${\;}_{1}={1}^{2}$,S${\;}_{2}={2}^{2}$,S${\;}_{3}={3}^{2}$,…,推断:S${\;}_{n}={n}^{2}$;②由圆x2+y2=r2的面积S=πr2,推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积S=πab.则①②两个推理依次是( )
| A. | 归纳推理,类比推理 | B. | 演绎推理,类比推理 | ||
| C. | 类比推理,演绎推理 | D. | 归纳推理,演绎推理 |
7.某校为了了解学生的成绩是否与玩网游有关系,随机抽查了110名学生,得到如下2×2列联表:
参考公式临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)根据列联表的数据,问:有多大把握认为“成绩优秀与玩网友有关?”
(2)现采用分层抽样方法,从不喜欢的样本中抽取5人,再从5人中随机抽取2人,求至少有一人成绩优秀的概率.
| 优秀 | 非优秀 | |
| 喜欢 | 10 | 50 |
| 不喜欢 | 20 | 30 |
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(2)现采用分层抽样方法,从不喜欢的样本中抽取5人,再从5人中随机抽取2人,求至少有一人成绩优秀的概率.
11.已知函数f(x)=2x2-ax+lnx在其定义域内不单调,则实数a的取范围为( )
| A. | (-∞,4] | B. | (-∞,4) | C. | (4,+∞) | D. | [4,+∞) |
12.多面体的三视图如图所示,则该多面体的体积为( )

| A. | $\frac{16\sqrt{2}}{3}$cm3 | B. | $\frac{32}{3}$cm3 | C. | 16$\sqrt{2}$cm3 | D. | 32cm3 |