题目内容
设抛物线y2=2x的焦点为F,过点
的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,|BF|=2,则△BCF与△ACF的面积之比
=________.
分析:利用三角形面积公式,可把△BCF与△ACF的面积之比转化为BC长与AC长的比,再根据抛物线的焦半径公式转化为A,B到准线的距离之比,借助|BF|=2求出B点坐标,得到AB方程,代入抛物线方程,解出A点坐标,就可求出BN与AE的长度之比,得到所需问题的解.
解答:
把x1=
∴直线AB过点
方程为
∴|AE|=2+
∵在△AEC中,BN∥AE,
∴
故答案为
点评:本题主要考查了抛物线的焦半径公式,侧重了学生的转化能力,以及计算能力.
练习册系列答案
相关题目