题目内容

设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=( )
A.
B.
C.
D.
【答案】分析:根据F到直线AB的距离为定值.推断出=,进而根据两三角形相似,推断出=,根据抛物线的定义求得
=,根据|BF|的值求得B的坐标,进而利用两点式求得直线的方程,把x=代入,即可求得A的坐标,进而求得
的值,则三角形的面积之比可得.
解答:解:如图过B作准线l:x=-的垂线,垂足分别为A1,B1
由于F到直线AB的距离为定值.
=
又∵△B1BC∽△A1AC、
=
由拋物线定义==
由|BF|=|BB1|=2知xB=,yB=-
∴AB:y-0=(x-).
把x=代入上式,求得yA=2,xA=2,
∴|AF|=|AA1|=
===
故选A
点评:本题主要考查了抛物线的应用,抛物线的简单性质.考查了学生基础知识的综合运用和综合分析问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网