题目内容

7.若函数f(x)=eax+3x有大于零的极值点,则 a的取值范围是(-∞,-3).

分析 根据题意,问题可以转化为f′(x)=3+aeax=0有正根,通过讨论此方程根为正根,求得参数的取值范围.

解答 解:设f(x)=eax+3x,则f′(x)=3+aeax
∵函数在x∈R上有大于零的极值点,
∴f′(x)=3+aeax=0有正根,
①当a≥0时,f′(x)=3+aeax>0,
∴f′(x)=3+aeax=0无实数根,
∴函数y=eax+3x,x∈R无极值点;
②当a<0时,由f′(x)=3+aeax=0,解得x=$\frac{1}{a}$ln(-$\frac{3}{a}$),
当x>$\frac{1}{a}$ln(-$\frac{3}{a}$)时,f′(x)>0,当x<$\frac{1}{a}$ln(-$\frac{3}{a}$)时,f′(x)<0,
∴x=$\frac{1}{a}$ln(-$\frac{3}{a}$)为函数的极值点,
∴$\frac{1}{a}$ln(-$\frac{3}{a}$)>0,解得a<-3,
∴实数a的取值范围是a<-3.
故答案为:(-∞,-3).

点评 本题考查了利用导数研究函数的极值,解题时要注意极值点即为导函数等于0的根,从而可以讲问题转化为根的存在性问题进行解决.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网