题目内容
17.已知a,b,c∈(0,1),且ab+bc+ac=1,则$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值为( )| A. | $\frac{{3-\sqrt{3}}}{2}$ | B. | $\frac{{9-\sqrt{3}}}{2}$ | C. | $\frac{{6-\sqrt{3}}}{2}$ | D. | $\frac{{9+3\sqrt{3}}}{2}$ |
分析 确定a+b+c≥$\sqrt{3}$,利用柯西不等式($\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$)(1-a+1-b+1-c)≥(1+1+1)2,即可求出$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值.
解答 解:∵0<a,b,c<1满足条件ab+bc+ac=1,
∴(a+b+c)2≥3(ab+ac+bc)=3
∴a+b+c≥$\sqrt{3}$,
∵($\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$)(1-a+1-b+1-c)≥(1+1+1)2
∴$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$≥$\frac{9}{3-(a+b+c)}$≥$\frac{9+3\sqrt{3}}{2}$.
当且仅当a=b=c=$\frac{\sqrt{3}}{3}$时,$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值为$\frac{9+3\sqrt{3}}{2}$.
故选D.
点评 本题考查$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$的最小值,考查柯西不等式的运用,属于中档题.
练习册系列答案
相关题目
5.已知全集U=R.集合A={x|x<3},B={x|x(x-1)<0},则A∩∁UB=( )
| A. | {x|1<x<3} | B. | {x|x≤0或1≤x<3} | C. | {x|x<3} | D. | {x|1≤x<3} |
12.在平面直角坐标系xOy中,由直线x=0,x=1,y=0与曲线y=ex围成的封闭图形的面积是( )
| A. | 1-e | B. | e | C. | -e | D. | e-1 |
9.计算定积分${∫}_{0}^{2π}$|cosx|dx的值为( )
| A. | 0 | B. | 2 | C. | 4 | D. | -4 |
6.设i是虚数单位,复数z满足z•(1+2i)2=3+4i,则z在复平面内对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.椭圆my2+x2=1的一个顶点在抛物线$y=\frac{1}{2}{x^2}$的准线上,则椭圆的离心率( )
| A. | $\frac{{\sqrt{63}}}{8}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 4 | D. | $\frac{{\sqrt{5}}}{2}$ |