题目内容

设函数f(x)的定义域为D,若任取x1∈D,存在唯一的x2∈D,满足
f(x1)+f(x2)
2
=C,则称C为函数y=f(x)在D上的均值,给出下列五个函数:①y=x;②y=x2;③y=4sinx;④y=lgx;⑤y=2x.则所有满足在其定义域上的均值为2的函数的序号为
 
考点:函数的值
专题:函数的性质及应用
分析:根据定义分别验证对于任意的x1∈D,存在唯一的x2∈D,使 f(x1)+f(x2)=4成立的函数即可.
解答: 解:首先分析题目求对于任意的x1∈D,存在唯一的x2∈D,使 f(x1)+f(x2)=4成立的函数.
①y=x,f(x1)+f(x2)=4得 x1+x2=4,解得x2=4-x1,满足唯一性,故成立.
②y=x2,由 f(x1)+f(x2)=4得 x12+x22=4,此时x2=±
4-x12
,x2有两个值,不满足唯一性,故不满足条件.
③y=4sinx,明显不成立,因为y=4sinx是R上的周期函数,存在无穷个的x2∈D,使
f(x1)+f(x2)
2
=2
成立.故不满足条件
④y=lgx,定义域为x>0,值域为R且单调,显然必存在唯一的x2∈D,使
f(x1)+f(x2)
2
=2
成立.故成立.
⑤y=2x定义域为R,值域为y>0.对于x1=3,f(x1)=8.要使
f(x1)+f(x2)
2
=2
成立,则f(x2)=-4,不成立.
故答案为:①④.
点评:本题主要考查新定义的应用,考查学生的推理和判断能力.综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网