ÌâÄ¿ÄÚÈÝ
16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬£¨I£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì£»
£¨¢ò£©ÇóÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
·ÖÎö £¨¢ñ£©ÇúÏßC1µÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2=4¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÔ²C1µÄÆÕͨ·½³Ì£®
£¨¢ò£©ÇúÏßC2µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö10·Ö£©
½â£º£¨¢ñ£©ÓÉÇúÏßC1µÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£¬
µÃ¦Ñ2=4¦Ñcos¦È£¬¡àx2+y2=4x£¬
¼´Ô²C1µÄÆÕͨ·½³ÌΪ£¨x-2£©2+y2=4£®------------£¨5·Ö£©
£¨¢ò£©ÓÉÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýµÃµ½ÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£ºx-$\sqrt{3}$y-2=0£®---£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÇúÏߵįÕͨ·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®Èôº¯Êýf£¨x£©=£¨k2-3k+2£©x+bÔÚRÉÏÊǼõº¯Êý£¬ÔòkµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A£® | £¨1£¬3£© | B£® | £¨1£¬2£© | C£® | £¨2£¬3£© | D£® | £¨3£¬4£© |
1£®·½³Ìx2-y2=0±íʾµÄͼÐÎÊÇ£¨¡¡¡¡£©
| A£® | Á½ÌõÏཻµ«²»´¹Ö±µÄÖ±Ïß | B£® | Á½Ìõ´¹Ö±Ö±Ïß | ||
| C£® | Á½ÌõƽÐÐÖ±Ïß | D£® | Ò»¸öµã |
5£®Èô½«Ò»¿ÅÖʵؾùÔȵÄ÷»×Ó£¨Ò»ÖÖ¸÷ÃæÉÏ·Ö±ð±êÓÐ1£¬2£¬3£¬4£¬5£¬6¸öµãµÄÕý·½ÌåÍæ¾ß£©£¬ÏȺóÅ×ÖÀÁ½´Î£¬Ôò³öÏÖÏòÉϵĵãÊýÖ®ºÍСÓÚ10µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1}{6}$ | B£® | $\frac{5}{6}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{3}{4}$ |