题目内容
10.已知数列{an}满足对任意的n∈N*,都有a13+a23+…+an3=(a1+a2+…+an)2且an>0.(1)求a1,a2的值;
(2)求数列{an}的通项公式;
(3)若bn=$\frac{8{a}_{n+3}}{{{a}_{n+2}}^{2}{{a}_{n+4}}^{2}}$,记Sn=$\underset{\stackrel{n}{∑}}{i=1}{b}_{i}$,如果Sn<$\frac{m}{9}$对任意的n∈N*恒成立,求正整数m的最小值.
分析 (1)由题设条件知a1=1.当n=2时,有a13+a23=(a1+a2)2,由此可知a2=2.
(2)由题意知,an+13=(a1+a2++an+an+1)2-(a1+a2++an)2,由于an>0,所以an+12=2(a1+a2++an)+an+1.同样有an2=2(a1+a2++an-1)+an(n≥2),由此得an+12-an2=an+1+an.所以an+1-an=1.所以数列{an}是首项为1,公差为1的等差数列,由通项公式即可得到所求.
(3)求得bn=$\frac{8{a}_{n+3}}{{{a}_{n+2}}^{2}{{a}_{n+4}}^{2}}$=$\frac{8(n+3)}{(n+2)^{2}(n+4)^{2}}$=2[$\frac{1}{(n+2)^{2}}$-$\frac{1}{(n+4)^{2}}$],运用数列的求和方法:裂项相消求和,可得Sn,结合不等式的性质,恒成立思想可得m≥$\frac{25}{8}$,进而得到所求最小值.
解答 解:(1)当n=1时,有a13=a12,
由于an>0,所以a1=1.
当n=2时,有a13+a23=(a1+a2)2,
将a1=1代入上式,可得a22-a2-2=0,
由于an>0,所以a2=2.
(2)由于a13+a23+…+an3=(a1+a2+…+an)2,①
则有a13+a23+…+an3+an+13=(a1+a2+…+an+an+1)2.②
②-①,得an+13=(a1+a2+…+an+an+1)2-(a1+a2+…+an)2,
由于an>0,所以an+12=2(a1+a2+…+an)+an+1.③
同样有an2=2(a1+a2+…+an-1)+an(n≥2),④
③-④,得an+12-an2=an+1+an.
所以an+1-an=1.
由于a2-a1=1,即当n≥1时都有an+1-an=1,
所以数列{an}是首项为1,公差为1的等差数列.
故an=n.
(3)bn=$\frac{8{a}_{n+3}}{{{a}_{n+2}}^{2}{{a}_{n+4}}^{2}}$=$\frac{8(n+3)}{(n+2)^{2}(n+4)^{2}}$=2[$\frac{1}{(n+2)^{2}}$-$\frac{1}{(n+4)^{2}}$],
则Sn=2[$\frac{1}{9}$-$\frac{1}{25}$+$\frac{1}{16}$-$\frac{1}{36}$+$\frac{1}{25}$-$\frac{1}{49}$+$\frac{1}{36}$-$\frac{1}{64}$+…+$\frac{1}{(n+1)^{2}}$-$\frac{1}{(n+3)^{2}}$+$\frac{1}{(n+2)^{2}}$-$\frac{1}{(n+4)^{2}}$]
=2[$\frac{1}{9}$+$\frac{1}{16}$-$\frac{1}{(n+3)^{2}}$-$\frac{1}{(n+4)^{2}}$]<2×$\frac{25}{144}$=$\frac{25}{72}$,
Sn<$\frac{m}{9}$对任意的n∈N*恒成立,可得$\frac{m}{9}$≥$\frac{25}{72}$,
即有m≥$\frac{25}{8}$,
可得正整数m的最小值为4.
点评 本题主要考查数列通项、求和与不等式等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识.
| A. | (1,+∞) | B. | (-∞,2) | C. | (2,+∞) | D. | (1,2] |
| A. | b<a<c | B. | a<b<c | C. | a<c<b | D. | b<c<a |
| A. | 4π | B. | 16π | C. | 24π | D. | 25π |
| 月份 | 7 | 8 | 9 | 10 | 11 |
| 销售单价x元 | 9 | 9.5 | 10 | 10.5 | 11 |
| 销售量y件 | 11 | 10 | 8 | 6 | 5 |
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?
参考公式:回归直线方程$\widehat{y}$=b$\widehat{x}$+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.
参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{x}_{i}^{2}$=502.5.