ÌâÄ¿ÄÚÈÝ
3£®ÎªÁ˶Ôij°àѧÉúµÄÊýѧ¡¢ÎïÀí³É¼¨½øÐзÖÎö£¬´Ó¸Ã°à25λÄÐͬѧ£¬15λŮͬѧÖÐËæ»ú³éȡһ¸öÈÝÁ¿Îª8µÄÑù±¾£®£¨1£©Èç¹û°´ÐÔ±ð±ÈÀý·Ö²ã³éÑù£¬¿ÉÒԵõ½¶àÉÙ¸ö²»Í¬µÄÑù±¾£¿£¨Ö»ÒªÇóд³öËãʽ£¬²»±Ø¼ÆËã³ö½á¹û£©£»
£¨2£©ÈôÕâ8È˵ÄÊýѧ³É¼¨´ÓСµ½´óÅÅÐòÊÇ65£¬68£¬72£¬79£¬81£¬88£¬92£¬95£®ÎïÀí³É¼¨´ÓСµ½´óÅÅÐòÊÇ72£¬77£¬80£¬84£¬86£¬90£¬93£¬98£®
¢ÙÇóÕâ8ÈËÖÐÇ¡ÓÐ3ÈËÊýѧ¡¢ÎïÀí³É¼¨¾ùÔÚ85·ÖÒÔÉϵĸÅÂÊ£¨½á¹ûÓ÷ÖÊý±íʾ£©£»
¢ÚÒÑÖªËæ»ú³éÈ¡µÄ8È˵ÄÊýѧ³É¼¨ºÍÎïÀí³É¼¨Èç±í£º
| ѧÉú±àºÅ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Êýѧ³É¼¨ | 65 | 68 | 72 | 79 | 81 | 88 | 92 | 95 |
| ÎïÀí³É¼¨ | 72 | 77 | 80 | 84 | 86 | 90 | 93 | 98 |
²Î¿¼¹«Ê½£ºÏà¹ØÏµÊý£ºr=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sqrt{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}\sum_{i=1}^{n}£¨{y}_{i}-\overline{y}£©^{2}}}$£¬R2=r2£¬
»Ø¹é·½³Ì£º$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£¬Æä$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$
²Î¿¼Êý¾Ý£º$\overline{x}$=80£¬$\overline{y}$=85£¬$\sum_{i=1}^{8}$£¨xi-$\overline{x}$£©2=868£¬$\sum_{i=1}^{8}$£¨yi-$\overline{y}$£©2¨T518£¬$\sum_{i=1}^{8}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=664£¬$\sqrt{868}$¡Ö29.5£¬$\sqrt{518}$¡Ö22.8£®
·ÖÎö £¨1£©°´±ÈÀýÇó³ö³éÈ¡µÄÄÐÅ®ÈËÊý£¬¸ù¾Ý×éºÏÊý¹«Ê½¼ÆËã¿ÉÄܵÄ×éºÏ·½·¨£»
£¨2£©·Ö²½¼ÆËã×éºÏ·½·¨£¬ÔÙ¼ÆËã¸ÅÂÊ£»
£¨2£©¸ù¾ÝËù¸ø¹«Ê½ºÍÊý¾Ý½øÐмÆË㣬µÃ³ö»Ø¹é·½³ÌºÍÏà¹ØÏµÊý£®
½â´ð ½â£º£¨1£©´Ó25λÄÐͬѧ£¬15λŮͬѧÖÐËæ»ú³éȡһ¸öÈÝÁ¿Îª8µÄÑù±¾£¬
°´ÐÔ±ð±ÈÀý·Ö²ã³éÑù£¬ÔòÄÐÉú³éÈ¡8¡Á$\frac{25}{25+15}$=5£¨ÈË£©£¬Å®Éú³éÈ¡8-5=3£¨ÈË£©£»
¿ÉÒԵõ½²»Í¬µÄÑù±¾ÊýÊÇ${C}_{25}^{5}$•${C}_{15}^{3}$£»
£¨2£©¢ÙÊýѧ³É¼¨ÔÚ85·ÖÒÔÉϵÄÓÐ3ÈË£¬ÎïÀí³É¼¨ÔÚ85·ÖÒÔÉϵÄÓÐ4ÈË£¬
µÚÒ»²½£¬´ÓÎïÀíµÄ4¸öÓÅÐã·ÖÊýÖÐÑ¡3¸öÓëÊýѧÓÅÐã·ÖÊý¶ÔÓ¦£¬ÖÖÊýÊÇA${\;}_{4}^{3}$£¬
µÚ¶þ²½£¬½«Ê£ÏµÄ5¸öÊýѧ·ÖÊýºÍÎïÀí·ÖÊýÈÎÒâ¶ÔÓ¦£¬ÖÖÊýÊÇ${A}_{5}^{5}$£¬¸ù¾Ý³Ë·¨ÔÀí£¬Âú×ãÌõ¼þµÄ´îÅäÖÖÊýÊÇ${A}_{4}^{3}{•A}_{5}^{5}$£®
Õâ8λͬѧµÄÎïÀí·ÖÊýºÍÊýѧ·ÖÊý·Ö±ð¶ÔÓ¦µÄÖÖÊý¹²ÓÐ${A}_{8}^{8}$ÖÖ£®
¹ÊËùÇóµÄ¸ÅÂÊP=$\frac{{A}_{4}^{3}{•A}_{5}^{5}}{{A}_{8}^{8}}$=$\frac{1}{14}$£®
¢ÚÉèyÓëxµÄÏßÐԻع鷽³ÌÊÇ$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£¬Ôò$\stackrel{¡Ä}{b}$=$\frac{664}{868}$¡Ö0.76£¬$\stackrel{¡Ä}{a}$=85-0.76¡Á80¡Ö24.2£¬
ËùÒÔyÓëxµÄÏßÐԻع鷽³ÌÊÇ$\stackrel{¡Ä}{y}$=0.76x+24.2£®
r=$\frac{664}{29.5¡Á22.8}$¡Ö0.987£¬R2=0.9872¡Ö0.97£®
µãÆÀ ±¾Ì⿼²éÁË·Ö²ã³éÑù£¬×éºÏÊý¹«Ê½µÄÓ¦Óã¬ÏßÐԻع鷽³Ì£¬ÊôÓÚÖеµÌ⣮
| A£® | 27¦Ð | B£® | 48¦Ð | C£® | 64¦Ð | D£® | 81¦Ð |
| A£® | 8 | B£® | 10 | C£® | 20 | D£® | 24 |
| A£® | a£¼b£¼c | B£® | a£¾b£¾c | C£® | b£¼a£¼c | D£® | b£¾a£¾c |
| A£® | £¨-$\frac{1}{2}$£¬+¡Þ£© | B£® | £¨$\frac{-3+\sqrt{3}}{2}$£¬+¡Þ£© | C£® | £¨$\frac{-3+\sqrt{3}}{2}$£¬$\frac{1}{2}$£© | D£® | £¨0£¬+¡Þ£© |
| A£® | A£¾B | B£® | sin2A£¾sin2B | C£® | cos2A£¼cos2B | D£® | a£¾b |