题目内容

3.已知△ABC的外心P满足$3\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{AC}$,则cosA=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

分析 由$3\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{AC}$,得$3\overrightarrow{AB}•\overrightarrow{AP}={\overrightarrow{AB}}^{2}+\overrightarrow{AB}•\overrightarrow{AC}$,$3\overrightarrow{AC}•\overrightarrow{AP}=\overrightarrow{AB}•\overrightarrow{AC}+{\overrightarrow{AC}}^{2}$
即$\frac{1}{2}{c}^{2}=bc•cosA$,$\frac{1}{2}{b}^{2}=bc•cosA$⇒b=c⇒cosA=$\frac{1}{2}$.

解答 解:∵△ABC的外心P满足$3\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{AC}$,
∴$3\overrightarrow{AB}•\overrightarrow{AP}={\overrightarrow{AB}}^{2}+\overrightarrow{AB}•\overrightarrow{AC}$,$3\overrightarrow{AC}•\overrightarrow{AP}=\overrightarrow{AB}•\overrightarrow{AC}+{\overrightarrow{AC}}^{2}$,
∵$\overrightarrow{AP}•\overrightarrow{AB}=\frac{1}{2}{c}^{2},\overrightarrow{AP}•\overrightarrow{AC}=\frac{1}{2}{b}^{2}$
∴$\frac{1}{2}{c}^{2}=bc•cosA$,$\frac{1}{2}{b}^{2}=bc•cosA$⇒b=c⇒cosA=$\frac{1}{2}$.
故选:A

点评 本题考查了三角形外心定义,向量的数量积运算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网