题目内容

17.在△ABC中,a、b、c分别是角A、B、C的对边,a=$\sqrt{5}$,$\overrightarrow{CA}$•$\overrightarrow{CB}$=10,角C为锐角,且满足2a=4asinC-csinA,求c的值.

分析 由条件利用正弦定理求得sinC的值,可得cosC的值,由$\overrightarrow{CA}$•$\overrightarrow{CB}$=10=ba•cosC,求得 b,再利用余弦定理求得c的值.

解答 解:△ABC中,∵a=$\sqrt{5}$,$\overrightarrow{CA}$•$\overrightarrow{CB}$=10,角C为锐角,且满足2a=4asinC-csinA,
由正弦定理可得asinC-csinA,∴2a=3asinC,∴sinC=$\frac{2}{3}$,∴cosC=$\sqrt{{1-sin}^{2}A}$=$\frac{\sqrt{5}}{3}$,
又a=$\sqrt{5}$,$\overrightarrow{CA}$•$\overrightarrow{CB}$=10=ba•cosC,∴b=6,
再利用余弦定理可得c=$\sqrt{{a}^{2}{+b}^{2}-2ab•cosC}$=$\sqrt{5+36-2•\sqrt{5}•6•\frac{\sqrt{5}}{3}}$=$\sqrt{21}$,
即c=$\sqrt{21}$.

点评 本题主要考查两个向量的数量积的定义,正弦定理、余弦定理的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网