题目内容

【题目】如图所示,在四边形ABCD中,AB⊥DA,CE= ,∠ADC= ;E为AD边上一点,DE=1,EA=2,∠BEC=

(1)求sin∠CED的值;
(2)求BE的长.

【答案】
(1)解:设∠CED=α.在△CED中,由余弦定理,得

CE2=CD2+DE2﹣2CD×DE×cos∠CDE,

得CD2+CD﹣6=0,解得CD=2(CD=﹣3舍去).

在△CED中,由正弦定理,得sin∠CED=


(2)解:由题设知α∈(0, ),所以cos

而∠AEB=

所以cos∠AEB=cos(

=cos cosα+sin sinα

=﹣ cosα+ sinα

=﹣

=

在Rt△EAB中,BE= =4


【解析】(1)设∠CED=α.在△CED中,由余弦定理,可解得CD=2,在△CED中,由正弦定理可解得sin∠CED的值.(2)由题设知α∈(0, ),先求cos ,而∠AEB= ,即可求cos∠AEB=cos( )的值.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:;余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网