题目内容
15.已知函数$f(x)=1+\frac{a}{{{2^x}+1}}$(a∈R)为奇函数,则$f(x)>\frac{1}{2}$的解集为(log23,+∞).分析 根据f(x)为R上的奇函数便可得到f(0)=0,从而求出a=-2,这样解不等式$1-\frac{2}{{2}^{x}+1}>\frac{1}{2}$即可得出$f(x)>\frac{1}{2}$的解集.
解答 解:f(x)为R上的奇函数;
∴f(0)=0;
即$1+\frac{a}{1+1}=0$;
∴a=-2;
∴由$f(x)>\frac{1}{2}$得,$1-\frac{2}{{2}^{x}+1}>\frac{1}{2}$;
整理得,2x>3;
∴x>log23;
∴$f(x)>\frac{1}{2}$的解集为(log23,+∞).
故答案为:(log23,+∞).
点评 考查奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,指数函数的值域,以及对数函数的单调性和对数式的运算性质.
练习册系列答案
相关题目
5.若数列{an}满足${a_{n+1}}=2{a_n}({a_n}≠0,n∈{N^*})$,且a2与a4的等差中项是5,则a1+a2+…+an等于( )
| A. | 2n | B. | 2n-1 | C. | 2n-1 | D. | 2n-1-1 |
6.要得到函数f (x)=sin2x的导函数 f′(x)的图象,只需将f (x)的图象( )
| A. | 向左平移$\frac{π}{2}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) | |
| B. | 向左平移$\frac{π}{2}$个单位,再把各点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变) | |
| C. | 向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的$\frac{1}{2}$倍(横坐标不变) | |
| D. | 向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) |
10.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:
根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是1400.
| 使用寿命 | [500,700) | [700,900) | [900,1100) | [1100,1300) | [1300,1500] |
| 只数 | 5 | 23 | 44 | 25 | 3 |
20.已知数列{an}是公比为2的等比数列,且4a1为am,an的等比中项,则$\frac{1}{m}+\frac{4}{n}$的最小值为( )
| A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{25}{6}$ | D. | 不存在 |