搜索
题目内容
如图,在四棱锥
中,底面
是边长为
的菱形,
,
底面
,
,
为
的中点,
为
的中点.
(Ⅰ)求四棱锥
的体积;
(Ⅱ)证明:直线
平面
.
试题答案
相关练习册答案
(Ⅰ)
;(Ⅱ)详见解析.
试题分析:(Ⅰ)求四棱锥
的体积,由体积公式
,由已知
底面
,显然
是高,且值为2,而底面是边长为
的菱形,
,,有平面几何知识,可求得面积
,代入公式,可求得体积;(Ⅱ)证明:直线
平面
,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,本题虽有中点,但没直接的三角形,可考虑用平行四边形的对边平行,可取OD的中点G,连结CG,MG,证明四边形
为平行四边形即可,也可取
中点
,连接
,
,利用面面平行则线面平行,证平面
平面
即可.
试题解析:(Ⅰ)
(Ⅱ)取
中点
,连接
,
,
,又
,
.
练习册系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
萌齐小升初强化模拟训练系列答案
相关题目
如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2
(1)求证:AD
B'D;
(2)求三棱锥A'-AB'D的体积。
如图,已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.
(1)求证:平面EFG⊥平面PAD;
(2)若M是线段CD上一点,求三棱锥M﹣EFG的体积.
如图,三棱柱
中,侧棱与底面垂直,
,
,
分别是
的中点
(1)求证:
∥平面
;
(2)求证:
⊥平面
;
(3)求三棱锥的体积
的体积.
如图,
是以
为直径的半圆上异于点
的点,矩形
所在的平面垂直于该半圆所在平面,且
(Ⅰ)求证:
;
(Ⅱ)设平面
与半圆弧的另一个交点为
,
①求证:
//
;
②若
,求三棱锥E-ADF的体积.
如果球的大圆周长为C,则这个球的表面积是( )
A.
B.
C.
D.
如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是( )
A.
B.
C.
D.
已知三棱锥
的所有顶点都在球
的球面上,
是边长为
的正三角形,
为球
的直径,且
,则此棱锥的体积为
.
某几何体的三视图如图所示, 则其体积为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案