题目内容
14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)的离心率为$\sqrt{3}$,则该双曲线的渐近线方程为( )| A. | y=±2x | B. | y=±$\sqrt{2}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{\sqrt{2}}{2}$x |
分析 运用双曲线的离心率公式和a,b,c的关系,可得b=$\sqrt{2}$a,由双曲线的渐近线方程即可得到所求方程.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>0)的离心率为$\sqrt{3}$,
可得e=$\frac{c}{a}$=$\sqrt{3}$,
即有c=$\sqrt{3}$a,由c2=a2+b2,
可得b=$\sqrt{2}$a,
即有渐近线方程为y=±$\frac{b}{a}$x,
即为y=±$\sqrt{2}$x.
故选:B.
点评 本题考查双曲线的渐近线方程的求法,注意运用离心率公式,考查运算能力,属于基础题.
练习册系列答案
相关题目
4.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与抛物线x2=y-1只有一个公共点,则双曲线的离心率为( )
| A. | 5 | B. | $\frac{5}{4}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{5}}{2}$ |
5.设F1,F2分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,若双曲线右支上存在一点P,使得(${\overrightarrow{OP}$+$\overrightarrow{O{F_2}}}$)•$\overrightarrow{{F_2}P}$=0,其中O为坐标原点,且|${\overrightarrow{P{F_1}}}$|=2|${\overrightarrow{P{F_2}}}$|,则该双曲线的离心率为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$+1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
2.下列函数中,x=0是极值点的函数是( )
| A. | y=-x3 | B. | y=x2 | C. | y=tanx-x | D. | y=$\frac{1}{x}$ |
19.双曲线${x^2}-\frac{y^2}{3}=1$的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |